Plasma metabolomic signatures associated with long-term breast cancer risk in the SU.VI.MAX prospective cohort

Lucie Lécuyer1*, Céline Dalle2, Bernard Lyan2, Aicha Demidem3, Adrien Rossary3, Marie-Paule Vasson3,4, Mélanie Petera2, Marie Lagree5, Thomas Ferreira3, Delphine Centeno2, Pilar Galan1, Serge Hercberg1,6, Mélanie Deschasaux1, Valentin Partula1, Bernard Srour1, Paule Latino-Martel1, Emmanuelle Kesse-Guyot1, Nathalie Druesne-Pecollo1, Stéphanie Durand2, Estelle Pujos-Guillot2, Mathilde Touvier1

Authors’ Affiliations:

1 Sorbonne Paris Cité Epidemiology and Statistics Research Center (CRESS), French National Institute of Health and Medical Research (Inserm) U1153, French National Institute for Agricultural Research (Inra) U1125, French National Conservatory of Arts and Crafts (Cnam), Paris 13 University, Nutritional Epidemiology Research Team (EREN), Bobigny, France.

2 Clermont Auvergne University, INRA, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, F-63000 Clermont-Ferrand, France.

3 Clermont Auvergne University, INRA, UMR 1019, Human Nutrition Unit (UNH), CRNH Auvergne, Cellular Micro-Environment, Immunomodulation and Nutrition (ECREIN), F-63000 Clermont-Ferrand, France.

4 Anticancer Center Jean-Perrin, CHU Clermont-Ferrand, France.

5 Clermont Auvergne University, Institut de Chimie de Clermont-Ferrand, Plateforme d’Exploration du Métabolisme, MetaboHUB-Clermont, BP 80026, F-63171 Aubière, France.

6 Public Health Department, Avicenne Hospital, Bobigny, France.

Running title: Metabolomic signatures of breast cancer risk

Keywords: Metabolomics, breast cancer, mass spectrometry, plasma, prospective study
Corresponding author contact information:

Lucie Lécuyer
EREN, Inserm U1153, SMBH Paris 13, 74 rue Marcel Cachin, F-93017 Bobigny Cedex, France
Telephone number: +33 1 48 38 89 54
Fax number: +33 1 48 38 89 31
e-mail: l.lecuyer@eren.smbh.univ-paris13.fr

Conflict of interest

The authors declare no potential conflicts of interest.

Word count: 3685/250

Number of figures: 1 / Number of tables: 3

Abbreviations:
AAA, Aromatic Amino Acids; ANOVA, analyses of variance; ATBC, Acetyl Tributyl Citrate; BCAA, Branched-Chain Amino Acids; BH, Benjamini Hochberg; BMI, Body Mass Index; CI, Confidence Interval; FDR, False Discovery Rate; GGT, γ-glutamyl-threonine; HCC, hepatocellular carcinoma, MS, Mass Spectrometry; NMR, Nuclear Magnetic Resonance; OR, Odds Ratio; PCA, Principal Component Analysis; SU.VI.MAX, Supplémentation en Vitamines et Minéraux Antioxydants.

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent: Informed consent was obtained from all individual participants included in the study.
Abstract

Background: Breast cancer is a major cause of death in occidental women. The role of metabolism in breast cancer etiology remains unclear. Metabolomics may help to elucidate novel biological pathways and identify new biomarkers in order to predict breast cancer long before symptoms appear. The aim of this study was to investigate whether untargeted metabolomic signatures from blood draws of healthy women could contribute to better understand and predict the long-term risk of developing breast cancer.

Methods: A nested case-control study was conducted within the SU.VI.MAX prospective cohort (13 years of follow-up) to analyze baseline plasma samples of 211 incident breast cancer cases and 211 matched controls by LC-MS mass spectrometry. Multivariable conditional logistic regression models were computed.

Results: 3565 ions were detected and 1221 were retained for statistical analysis. 73 ions were associated with breast cancer risk (p<0.01, FDR≤0.2). Notably, we observed that a lower plasma level of O-succinyl-homoserine (0.70[0.55-0.89]) and higher plasma levels of valine/norvaline (1.45[1.15-1.83]), glutamine/isoglutamine (1.33[1.07-1.66]), 5-aminovaleric acid (1.46[1.14-1.87]), phenylalanine (1.43[1.14-1.78]), tryptophan (1.40[1.10-1.79]), γ-glutamyl-threonine (1.39[1.09-1.77]), ATBC (1.41[1.10-1.79]) and pregnene-triol sulfate (1.38[1.08-1.77]) were associated with an increased risk of developing breast cancer during follow-up.

Conclusion: Several pre-diagnostic plasmatic metabolites were associated with long-term breast cancer risk and suggested a role of microbiota metabolism and environmental exposure.

Impact: After confirmation in other independent cohort studies, these results could help to identify healthy women at higher risk of developing breast cancer in the subsequent decade and to propose a better understanding of the complex mechanisms involved in its etiology.
Trial registration: SU.VI.MAX, clinicaltrials.gov NCT00272428. Registered 3 January 2006
INTRODUCTION

Breast cancer is the most common female cancer in the world (www.dietandcancerreport.org) and ranks as the fifth cause of death from cancer overall (626,679 deaths worldwide in 2018) (1). Despite some well-known risk factors as adult height, reproductive life and hormonal factors, and, for postmenopausal women, alcoholic drinks, body fatness and adult weight gain (www.wcrf.org/breast-cancer-2017), the role of metabolism in breast cancer etiology remains unclear and hypothesis-driven research has not yet allowed to entirely elucidate it.

Recent advances in modern explorative technologies, such as metabolomics, increase the capacity to identify additional risk factors and better understand mechanisms involved (2). Indeed, mass spectrometry (MS) and nuclear magnetic resonance (NMR) allows detecting a wide range of low molecular weight biochemicals in biofluids, cells or tissues (3) and thus can provide a signature of both exogenous exposures and endogenous metabolism. Therefore, metabolomics allows identifying biomarkers relevant to cancer etiology and elucidating novel biological pathways (4–6). Several cross-sectional epidemiological studies highlighted differences between metabolomic profiles and breast cancer patients and controls (7,8). An NMR-based prospective study (5 years of follow-up) recently showed the benefit of metabolomic signatures of breast cancer risk (9). However metabolomic signatures may be altered by the presence of a breast tumor itself (10), arguing for similar investigations with a long follow-up. Improving the ability to discriminate profiles at higher risk of developing breast cancer in the subsequent decades through the identification of pre-diagnostic biomarkers, in order to establish preventive approaches, remains an important focus in breast cancer research.

Two recent semi-untargeted MS studies investigated the associations between diet- (11) or BMI-related metabolites (12) and long-term breast cancer risk, and found promising results supporting the role of diet or BMI in postmenopausal breast cancer etiology. We previously...
set-up a prospective nested case-control study within the SU.VI.MAX cohort in order to
investigate whether baseline metabolomic profiles from plasma of apparently healthy women
could contribute to identify women who would develop breast cancer during the subsequent
years, and better understand the etiology of this complex disease. Using an NMR
metabolomics analysis, higher fasting plasma levels of valine, lysine, glutamine, glucose and
lower plasma levels of lipoproteins, glycerol-derived compounds were notably found to be
associated with a higher risk of developing breast cancer (13). In order to increase the number
of metabolites detected both in terms of sensitivity and metabolome coverage, this study
applied for the first time a fully untargeted and non-oriented MS analysis, with the objective
to highlight new endogenous or exogenous metabolites associated with long-term risk of
breast cancer.

MATERIALS AND METHODS

Population study

The present analysis was based on a case–control study nested within the SU.VI.MAX
prospective cohort (clinicaltrials.gov; NCT00272428). The latter was initially designed to
investigate the influence of a daily supplementation with nutritional doses of antioxidants on
the incidence of cardiovascular diseases and cancers. The study design and methods have
been previously detailed (14,15). Briefly, this study is a population-based, double-blind,
placebo-controlled, randomized trial enrolling a total of 13,017 participants recruited in 1994-
1995. The intervention study lasted 8 years, and observational follow-up of health events was
maintained until September 2007. Written informed consent was obtained from all
participants. The trial was approved by the Ethics Committee for Studies with Human
Subjects of Paris-Cochin Hospital (CCPPRB 706/2364) and the ‘Commission Nationale de
Baseline data collection

At inclusion, self-administered questionnaires about sociodemographic characteristics, smoking status, medication use, health status and family history of cancer were filled-in by participants. During a baseline clinical examination, all participants underwent anthropometric measurements (height and weight) and a blood draw (occurring after a 12h-fasting period) by study nurses and physicians. These 35-ml venous blood samples were collected in sodium heparin Vacutainer tubes (Becton Dickinson, Rungis, France). After centrifugation at +4°C, plasma aliquots were immediately prepared and stored frozen at -20°C during less than two days and then stored in liquid nitrogen.

Case ascertainment

Health events that occurred during follow-up (from 1994 to 2007) were self-reported by participants. Medical data were gathered through participants, physicians, and hospitals and reviewed by an independent physician expert committee. Pathological reports were used to validate cases and extract cancer characteristics. Cancers were classified by using the International Chronic Diseases Classification, 10th Revision, Clinical Modification (16).

Nested case-control study

The present analysis initially included 215 participants with a first incident invasive breast cancer matched 1:1 with controls for baseline age (35-39y/40-44y/45-49y/50-54y/55-59y/>60y), menopausal status (pre/post-menopause status at baseline and at diagnosis), BMI (<18.5kg/m²: underweight, ≥18.5 kg/m² to <25 kg/m²: normal weight and ≥25 kg/m²:...
overweight/obese), arm assignment to the initial SU.VI.MA clinical trial (placebo/supplemented), smoking status (current smokers and non/former smokers at baseline) and season of blood draw (a priori-defined periods: October-November/December-January-February/March-April-May). Controls selection was based on the classical density sampling method (17), i.e. every time a case was diagnosed, one control was selected from other participants from the cohort with no breast cancer at that time.

Metabolomic analyses

Metabolomic profiling was conducted using ultrahigh performance liquid chromatography/mass spectroscopy with the Metabolic profiler® platform (Bruker Daltonique, Wissembourg, France). Details on chemicals and reagents, biological samples preparation, metabolic profiling, raw data extraction and metabolite identification are available in [Supplementary Methods and Figure S1](#). Samples were randomized within the analytical sequence based on a Williams Latin Square strategy defined according to the main factors of the study. The stability of the analytical system was monitored using pooled samples as quality control, analyzed in the same sequence than participant samples (injected one time at the beginning of each sequence and then after each set of 12 samples). This present metabolomic discovery approach allows semi quantitative measurements, representing relative ion intensities in arbitrary unit. However, even if it is not absolute quantitation, there are linear relations between ion intensity for each metabolite and its concentration level in the samples.

Statistical analysis
Participants’ baseline characteristics were compared between cases and controls using χ^2 tests for categorical variables and Student tests for continuous variables. Less than 5% of values were missing for all covariates and missing values were replaced by the mode.

Prospective associations between each ion’s signal intensity and breast cancer risk were characterized using multivariable conditional logistic regression models. Odds ratios (OR) for an increment of 1 SD for each metabolite and their 95% confidence intervals (95% CI) were computed as well as tests for linear trend. Multivariable models were adjusted for the following baseline characteristics: age (continuous), BMI (continuous), smoking status (current, former, non-smokers), height (continuous), alcohol intake (continuous), physical activity (low, moderate, intense), education level (primary, secondary, superior), family history of breast cancer, number of children and use of hormone replacement therapy for menopause; all these covariates constituting the reference model. Models were adjusted for matching factors only when the variable was more precise than the one used for the matching, in order to avoid residual confounding. The models were not additionally adjusted for menopausal status (pre/post-menopause status at baseline and at diagnosis), season of blood draw (October-November/December-January-February/March-April-May), and arm assignment to the initial SU.VI.MAX clinical trial (yes/no) since cases and controls were already matched for these variables with the same coding. In order to limit the false negative rate (type II error = risk of not detecting real associations) in this exploratory untargeted metabolomic study, a False Discovery Rate (FDR) level of 0.2 was retained from the Benjamini Hochberg procedure (BH) (18) (1221 tests: 530 ions in ESI positive mode and 691 ions in ESI negative mode). Linearity assumption was checked by plotting the ion’s intensity as a function of logit(predicted values of breast cancer risk). Odds ratios (ORs) for categorized intensities in tertiles were also computed, as well as a Spearman correlation matrix of the identified associated metabolites.
Sensitivity analysis was performed on the same models by excluding cases diagnosed during the first year of follow-up as well as the matched controls to prevent reverse causality bias. Exploratory stratified and heterogeneity (interaction) analyses were also performed according to menopausal status at diagnosis and according to the median follow-up duration: 5.8 years (to investigate differentially short- or long-term associations with breast cancer risk). Interaction was tested as the produce of each ion (continuous/SD) by these two factors (2 categories each).

A multivariate analysis using a principal component analysis (PCA) with rotated factors by orthogonal transformation was performed on ions associated with breast cancer from logistic regressions. The four first factors were retained according to the plot of the total explained variance (Cattel’s scree plots) (19). The multivariable conditional logistic regression models were run on these factors (with the same adjustments as described above) to investigate the associations between metabolomic patterns (combinations of metabolites variations), and breast cancer risk.

Analyses were performed using SAS software (v9.3, Cary, NC) and plots were generated using R software (v3.5.2). All of the statistical tests were 2-sided.

RESULTS

The baseline characteristics of breast cancer cases and controls in the study population are summarized in Table 1. The cases were more likely to be taller with more frequent family history of breast cancer than controls. 25% of cases were diagnosed before 3.5 years, 50% before 5.8 years and 75% before 9.4 years. The maximum length of follow-up was 12.8 years. 3565 ions were detected and 1221 were retained for statistical analysis. From logistic regression analyses, 53 ions were positively associated with breast cancer risk and 20 ions were inversely associated (p≤0.01, FDR≤0.2). Results of all associated ions are shown in
Supplementary Table S1. Among these ions, some have been identified using available databases (in-house database, Metlin (https://metlin.scripps.edu), Human Metabolome Database (www.hmdb.ca), Kyoto Encyclopedia of Genes and Genomes database) and analytic data (as MS2); the associations between these ions (N=9) and breast cancer risk are displayed in Table 2. A lower plasma level of O-succinyl-homoserine (0.70[0.55-0.89]) and higher plasma levels of valine/norvaline (1.45[1.15-1.83]), glutamine/isoglutamine (1.33[1.07-1.66]), 5-aminovaleric acid (1.46[1.14-1.87]), phenylalanine (1.43[1.14-1.78]), tryptophan (1.40[1.10-1.79]), γ-glutamyl-threonine (GGT) (1.39[1.09-1.77]), acetyl tributyl citrate ATBC (1.41[1.10-1.79]) and the putative pregnene-triol sulfate (1.38[1.08-1.77]) were associated with an increased risk of developing breast cancer during follow-up. Linearity assessments, as well as analyses performed with ions categorized in tertiles were provided in Supplementary Figures S2.a and S2.b and Table S2. The Spearman correlation matrix of the identified associated metabolites is provided in Supplementary Table S3. Positive correlations (p<0.05) were found for pregnegne-triol sulfate with 5-aminovaleric acid, tryptophan and GGT; for phenylalanine with valine, tryptophan, 5-aminovaleric acid and glutamine; for valine with 5-aminovaleric acid, tryptophan and glutamine; for 5-aminovaleric acid with GGT; for tryptophan with glutamine; and for GGT with glutamine. Inverse correlations were found for O-succinyl-homoserine with 5-aminovaleric acid and ATBC; and for 5-aminovaleric acid with ATBC. Results of sensitivity, stratification and heterogeneity analyses are shown in Supplementary Tables S4, S5 and S6. All identified ions remained associated with breast cancer when excluding cases diagnosed before one year of follow up. No interaction was found between breast cancer risk and duration of follow-up. Higher plasma level of glutamine was associated with an increased risk of breast cancer only in premenopausal women (P-interaction=0.003, FDR=0.2).
All ions associated with breast cancer risk in logistic regressions were then analyzed by PCA. The four first PCA factors (metabolomic patterns) explained more than 36% of total variability. Loading values are displayed in Supplementary Table S7. The first factor was notably characterized by higher plasma levels of valine and 5-aminovaleric acid, the second factor was in particular characterized by higher plasma levels of phenylalanine, valine, 5-aminovaleric acid and tryptophan, the third by lower plasma level of pregnene-triol sulfate and the fourth by higher plasma levels of phenylalanine, valine 5-aminovaleric acid, GGT and glutamine (loading values ≥|0.20|). Moreover, several unidentified ions also characterized these four factors. These data allowed distinguishing three metabolomic patterns (factors 1, 2 and 4) associated with an increased risk of breast cancer in multivariable conditional logistic regression models and one (factor 3) with a decreased risk (FDR <0.05, Table 3).

DISCUSSION

To our knowledge, the present prospective study was the first fully untargeted and non-oriented LC-MS-based analysis aiming to investigate the associations between pre-diagnosis metabolic profiles and long-term breast cancer risk. Untargeted metabolomics, by the detection of a large number of metabolites, allowed discriminating early phenotypes and revealing a plasma metabolic signature announcing the evolution towards breast cancer in the subsequent 13 years. This could be relevant for detecting specific plasmatic profiles of women at higher risk for this disease and improve personalized prevention. A profile (signature) of circulating levels of multiple metabolites provides insights to draw an overall picture of the different pathways involved in the etiology of this cancer (20). Even if the origin of metabolites variations (exogenous or endogenous) cannot be determined in the present study, our results also illustrate that metabolomics integrates information regarding the influence of both extrinsic and intrinsic factors, such as lifestyle exposures and basal
metabolism, and consequently address the complex issue of environment and health interaction.

In the present study, we found that a lower plasma level of O-succinyl-homoserine and higher plasma levels of valine/norvaline, glutamine/isoglutamine, 5-aminovaleric acid, phenylalanine, tryptophan, γ-glutamyl-threonine, ATBC and pregnene-triol sulfate were associated with an increased risk of developing breast cancer during the following decade. Three metabolomic patterns characterized by several concurrently metabolites variations were associated with an increased risk of breast cancer as well as another metabolomic pattern associated with a decreased risk. These univariate analysis (analysis of one by one metabolite variation) and multivariate analysis (analysis of combinations of simultaneous metabolites variations) allowed getting complementary overviews of metabolic signatures discriminating phenotypes at higher risk for this disease well before breast cancer clinical onset.

We previously highlighted a higher plasma level of glutamine and valine in the future breast cancer cases with NMR analyses on the same population study (13) which was consistent with our present results. An increase in plasmatic levels of valine and three γ-glutamyl dipeptides was also recently found to be positively associated with BMI and estrogen receptor positive (ER+) breast cancer risk in postmenopausal women through a semi-untargeted MS study (12). The pregnene-triol sulfate is a steroid hormone and belongs to progestative family compounds. In line with our results, two semi-untargeted MS studies found a positive association between steroid hormones and breast cancer risk in postmenopausal women (11,12). Four metabolomic studies reported that an increase level of phenylalanine was positively associated with hepatocellular carcinoma (HCC) risk (21–24) and three of these studies found that a higher level of glutamine was associated with a decreased risk of HCC (21–23). Concerning valine, findings were more contrasted; one of these studies showed a
positive association with HCC risk (21) while another observed an inverse association (22). An increase in plasmatic valine level was also reported in two metabolomic studies to be positively associated with pancreatic adenoma risk (25) and inversely associated with prostate cancer risk (26). In three metabolomic studies an inverse association was found between phenylalanine (26), tryptophan (27), γ-glutamyl-histidine (28), γ-glutamyl-phenylalanine (26,27) and prostate cancer risk while a positive association was reported between γ-glutamyl-glutamine and non-aggressive prostate cancer risk (27). The comparisons of our results with other prospective metabolomic studies should be interpreted with caution, taking account methodological and technological variations (as the wide range of metabolomics platforms and types of analyses), and since the etiology may vary according to cancer locations.

The findings highlighted in the present study provide evidence for circulating metabolites as putative risk biomarkers for breast cancer. Given that metabolites concerned by the observed variations are not specific of one metabolic pathway and as their variations could arise from several types of exposure and endogenous reactions, precaution is needed in the mechanistic interpretation of our epidemiological findings. Even so, we propose interpretation hypotheses for some presumed pathways, summarized in Figure 1. Among the possible interpretations, our results could suggest a perturbation of energy and amino acids metabolism, a set-up of conditions favoring cell proliferation, inflammation, and oxidative stress in women who will develop breast cancer involving environmental exposure and microbiota metabolism. Glutamine and valine (one of the branched chain amino acids; BCAAs), positively correlated in our study, are two glycogenic amino acids; their plasma increase could suggest an amplified phenomenon of gluconeogenesis. BCAAs were previously suggested as markers of cardiovascular disease risk (29), insulin resistance (30) and diabetes (31). Moreover there is convincing evidence on the effect of obesity on an increased risk of postmenopausal breast
cancer, and pathways related to insulin resistance is one of the number of plausible mechanisms that may explain this relationship (32). Moreover, valine and glutamine are regulators of many cell signaling pathways including activators of the mTOR pathway; one of the main cell proliferation routes (31). ATBC is an alternative plasticizer to phthalates (33) widely used in products such as food wrap, vinyl toys, and pharmaceutical excipients. Although this contaminant does not seem to accumulate in tissues (34), recent data revealed potential biological activity on tissue growth (35). The combination of plasmatic increase in both ATBC and in a progestative sulfate steroid may interact either with PPAR signaling involved in cell proliferation and inflammation, and/or with steroid signaling (36). Indeed, ATBC has been shown to influence steroid levels (35) and is known to interact with several signaling pathways as a ligand for steroid xenobiotic receptor or sexual hormone binding globulin involved in steroid signaling (33). Phenylalanine and tryptophan are aromatic amino acids (AAAs, correlated in our study; R=0.27) and high level of AAAs in blood have been considered as an inflammatory marker in patients with liver cirrhosis (37). Disruptions in AAAs and BCAAs levels are found in several pathologies with chronical low-grade inflammation such as obesity and diabetes (38,39); in our study valine (BCAA) is highly positively correlated with AAAs (phenylalanine; R=0.47 and tryptophan; R=0.24). Data on the kynurenine/tryptophan ratio, unfortunately unavailable in this study, would be useful to support this hypothesis, as it reflects IDO1 gene expression, which increases in situations of chronic low-grade inflammation. 5-aminovaleric acid is a catabolism product from lysine; its increase could witness either the presence of cellular necrosis or microbiota metabolism. In mice, higher urinary levels of 5-aminovaleric acid was associated with intestinal inflammation (40). Concerning identified metabolites, the second PCA-derived factor highlighted in our study could represent an inflammatory pattern as it was notably characterized by higher plasma levels of phenylalanine, valine, 5-aminovaleric acid and tryptophan. Our findings
could also reflect an influence of gut microbiota, since O-succinyl-homoserine is a metabolite exclusively synthetized by bacteria. Another metabolite synthetized by gut microbiota, 2-amino-4-cyano butanoic acid, was associated with increased breast cancer risk in this study before FDR correction only (OR=1.28 [1.03-1.58], p=0.02, FDR=0.3, data not tabulated). The variation of these two microbiota-related metabolites could be interpreted as an oxidative stress response given their potential role in glutamate and glutathione synthesis. Indeed, humans metabolism can produce cysteine (one component of glutathione) using O-succinyl-homoserine instead of homocysteine (41). 2-amino-4-cyano butanoic acid is the substrate of nitrilase responsible for the \textit{de novo} synthesis of glutamate in bacteria and fungus (42). Moreover it is also implied in heme synthesis, recognized as an oxidative biocompound (43). Likewise, the increase in plasmatic glutamine and in γ-glutamyl-threonine (positively correlated in our study) can suggest both a decrease in antioxidant defenses and an oxidative stress response (γ-glutamyl-dipeptides may indicate increased glutathione synthesis). The data available in this study do not allow to draw firm conclusions about these mechanistic interpretations, which need further investigations for their validation, such as complementary analyses of other metabolites variation involved in the same pathway (but not detected with the present analytical technic), fluxomic analyses to determine the rates of metabolic reactions, or lipidomic and proteomic analyses to cover a wide range of biggest molecules.

The major strengths of this study pertained to the fully untargeted MS metabolomics approach and the prospective design. However, several limitations should be acknowledged. First, the relatively small sample size was probably sufficient for main analyses, but it was certainly limited for secondary stratified analyses. For instance, a larger sample size could have help to investigate more precisely the relation between the metabolites and the duration before cancer development (e.g. short, medium and long term). Second, we cannot rule out the possibility of
residual or unmeasured confounding despite the large spectrum of covariates taken into account, and we cannot exclude the possibility of overfitting of the models. Third, because the size of the sample did not allow keeping apart a validation set, we did not compute predictive performance such as AUC. However the main interest of our study lied in a better understanding of breast cancer etiology rather than in an improvement in discrimination models. Then, only LC-MS and not GC-MS was applied. This may have limited our ability to detect some categories of metabolites which could have supported certain mechanistic interpretations. Moreover, as the metabolic profiles were established a decade before the diagnostic, some small variations may not have been detected. Some of the metabolites highlighted in our study are at the crossroads of several metabolic pathways, thus these mechanistic interpretations resulting from literature should be considered with caution and need further investigations to be validated. Other interpretations could also be considered. Furthermore, this metabolomic analysis was based on a single blood draw so we could not investigate the stability of the profiles. Nevertheless, several studies showed a good stability and reproducibility of metabolomic measurements for most of metabolites (44,45). Finally, as it is usually the case in a fully untargeted metabolomic approach, several associated ions could not be identified to date. However, these findings will be useful in the future in a context of strong development of metabolites databases and to compare our results with other future LC-MS studies.

In conclusion, this prospective study highlighted associations between baseline untargeted metabolomic profiles and subsequent long-term breast cancer risk. These findings generate mechanistic hypotheses regarding the etiology of this complex disease, which were consistent with those reported in our NMR analysis, and include a possible implication of gut microbiota activity and environmental contamination/exposure. If replicated in other independent
prospective studies and after quantification of key metabolites to set discrimination thresholds, these results might contribute to develop screening strategies for the identification, before tumor set up, of women at higher risk of developing a breast cancer in the decade following the blood draw.

Acknowledgments

The authors thank Younes Esseddik, Frédéric Coffinieres, Thi Hong Van Duong, Paul Flanzy, Régis Gatibelza, Jagatjit Mohinder and Maithyly Sivapalan (computer scientists), Rachida Mehroug and Frédérique Ferrat (logistic assistants), Nathalie Arnault, Véronique Gourlet, PhD, Fabien Szabo, PhD, Julien Allegre, and Laurent Bourhis (data-manager/statisticians) and Cédric Agaesse (dietitian) for their technical contribution to the SU.VI.MAX study. We also thank Nathalie Druesne-Pecollo, PhD (operational coordination) as well as all participants of the SU.VI.MAX study. The authors thank Dan Chaltiel for his help in R programming. This work was conducted in the framework of the French network for Nutrition And Cancer Research (NACRe network), www.inra.fr/nacre and received the NACRe Partnership Label. Metabolomic analysis were performed within the metaboHUB French infrastructure (ANR-INBS-0010).

This work was supported by the French National Cancer Institute [grant number INCa_8085 for the project, and PhD grant number INCa_11323 for L. Lecuyer]; the Federative Institute for Biomedical Research IFRB Paris 13; and the Cancéropôle Ile-de-France/Région Ile de France. The funders had no role in the design, analysis, or writing of this article.
REFERENCES

Table 1 Baseline characteristics of breast cancer cases and controls\(^a\), SU.VI.MAX cohort, France (1994-2007)

<table>
<thead>
<tr>
<th></th>
<th>Breast cancer cases (N=211)</th>
<th>Controls (N=211)</th>
<th>P(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at baseline (y)</td>
<td>49.0±6.0</td>
<td>48.9±6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>23.2±4.0</td>
<td>23.6±4.2</td>
<td>0.3</td>
</tr>
<tr>
<td><18.5 kg/m(^2) (underweight)</td>
<td>9 (4.3)</td>
<td>6 (2.8)</td>
<td></td>
</tr>
<tr>
<td>≥18.5 to <25 kg/m(^2) (normal weight)</td>
<td>148 (70.1)</td>
<td>151 (71.6)</td>
<td></td>
</tr>
<tr>
<td>≥25 kg/m(^2) (overweight)</td>
<td>54 (25.6)</td>
<td>54 (25.6)</td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>163.0±6.2</td>
<td>160.9±5.9</td>
<td>0.0004</td>
</tr>
<tr>
<td>Intervention group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>105 (49.8)</td>
<td>105 (49.8)</td>
<td></td>
</tr>
<tr>
<td>Antioxidants</td>
<td>106 (50.2)</td>
<td>106 (50.2)</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never and former</td>
<td>164 (77.7)</td>
<td>164 (77.7)</td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>47 (22.3)</td>
<td>47 (22.3)</td>
<td></td>
</tr>
<tr>
<td>Physical activity</td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>Irregular</td>
<td>67 (31.8)</td>
<td>60 (28.4)</td>
<td></td>
</tr>
<tr>
<td>< 1 h/d walking equivalent</td>
<td>69 (32.7)</td>
<td>72 (34.1)</td>
<td></td>
</tr>
<tr>
<td>≥ 1 h/d walking equivalent</td>
<td>75 (35.5)</td>
<td>79 (37.4)</td>
<td></td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>Primary</td>
<td>37 (17.5)</td>
<td>44 (20.9)</td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>82 (38.9)</td>
<td>91 (43.1)</td>
<td></td>
</tr>
<tr>
<td>Superior</td>
<td>92 (43.6)</td>
<td>76 (36.0)</td>
<td></td>
</tr>
<tr>
<td>Number of biological children</td>
<td>1.8±1.2</td>
<td>2±1.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Hormonal treatment for menopause (yes)</td>
<td>76 (36.0)</td>
<td>75 (35.5)</td>
<td>0.9</td>
</tr>
<tr>
<td>Menopausal status at baseline</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Premenopausal</td>
<td>129 (61.1)</td>
<td>129 (61.1)</td>
<td></td>
</tr>
<tr>
<td>Postmenopausal</td>
<td>82 (38.9)</td>
<td>82 (38.9)</td>
<td></td>
</tr>
<tr>
<td>Menopausal status at diagnosis</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Premenopausal</td>
<td>78 (37.0)</td>
<td>78 (37.0)</td>
<td></td>
</tr>
<tr>
<td>Postmenopausal</td>
<td>133 (63.0)</td>
<td>133 (63.0)</td>
<td></td>
</tr>
<tr>
<td>Family history of breast cancer(^c) (yes)</td>
<td>35 (16.6)</td>
<td>21 (10.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>Alcohol intake (g/d)</td>
<td>11.2±12.0</td>
<td>11.5±13.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Month of blood draw</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>March-April-May</td>
<td>77 (36.5)</td>
<td>77 (36.5)</td>
<td></td>
</tr>
<tr>
<td>October-November</td>
<td>31 (14.7)</td>
<td>32 (15.2)</td>
<td></td>
</tr>
<tr>
<td>December-January-February</td>
<td>103 (48.8)</td>
<td>102 (48.3)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Values are means ± SD or n (%).

\(^b\) P for the comparison between breast cancer cases and controls using \(\chi^2\) tests for categorical variables or Student tests (from analysis of variance models) for continuous variables.

\(^c\) Among first degree female relatives.

SD, Standard Deviation
Table 2: Identified ions associated with breast cancer risk from multivariable conditional logistic regression\(^a\) - SU.VI.MAX cohort, France (1994-2007)

<table>
<thead>
<tr>
<th>Name (Level of confidence for identification(^b))</th>
<th>Annotation</th>
<th>Measured mass m/z</th>
<th>Retention time (min)</th>
<th>Mode</th>
<th>Cases/controls</th>
<th>Mean ± SD</th>
<th>OR [95% CI]</th>
<th>P-trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-phenylalanine (1)</td>
<td>[M+H]+</td>
<td>166.08618</td>
<td>10.11</td>
<td>ESI+</td>
<td>211/211</td>
<td>227718 ± 42535</td>
<td>1.43 [1.14-1.78]</td>
<td>0.002(^c)</td>
</tr>
<tr>
<td>L-valine/norvaline (1)</td>
<td>[M+H-CH2O2]+</td>
<td>72.08089</td>
<td>3.08</td>
<td>ESI+</td>
<td>211/211</td>
<td>115033 ± 24435</td>
<td>1.45 [1.15-1.83]</td>
<td>0.002(^c)</td>
</tr>
<tr>
<td>5-aminovaleric acid (1)</td>
<td>[M+Na]+</td>
<td>140.06816</td>
<td>2.29</td>
<td>ESI+</td>
<td>211/211</td>
<td>10219 ± 5139</td>
<td>1.46 [1.14-1.87]</td>
<td>0.003(^d)</td>
</tr>
<tr>
<td>O-succinyl-L-homoserine (1)</td>
<td>[M+Na-2H]-</td>
<td>240.04755</td>
<td>2.86</td>
<td>ESI-</td>
<td>203/203</td>
<td>919 ± 400</td>
<td>0.70 [0.55-0.89]</td>
<td>0.004(^d)</td>
</tr>
<tr>
<td>ATBC (acetyl tributyl citrate) (1)</td>
<td>[M+Na]+</td>
<td>425.21694</td>
<td>19.31</td>
<td>ESI+</td>
<td>211/211</td>
<td>2198 ± 964</td>
<td>1.41 [1.10-1.79]</td>
<td>0.006(^d)</td>
</tr>
<tr>
<td>L-tryptophan (1)</td>
<td>[M+Na]+</td>
<td>227.07887</td>
<td>11.09</td>
<td>ESI+</td>
<td>211/211</td>
<td>799 ± 180</td>
<td>1.40 [1.10-1.79]</td>
<td>0.007(^d)</td>
</tr>
<tr>
<td>L-(\gamma)-glutamyl-L-threonine (1)</td>
<td>[M+H-H2O]+</td>
<td>231.1451</td>
<td>2.52</td>
<td>ESI+</td>
<td>211/211</td>
<td>1054 ± 601</td>
<td>1.39 [1.09-1.77]</td>
<td>0.008(^d)</td>
</tr>
<tr>
<td>L-glutamine / L-isoglutamine (1)</td>
<td>[M+H-C4H8O]+</td>
<td>90.0551</td>
<td>2.32</td>
<td>ESI+</td>
<td>211/211</td>
<td>13187 ± 2982</td>
<td>1.33 [1.07-1.66]</td>
<td>0.009(^d)</td>
</tr>
<tr>
<td>pregnene-triol sulfate (2)</td>
<td>C21H33O6S</td>
<td>413.19771</td>
<td>16.11</td>
<td>ESI-</td>
<td>203/203</td>
<td>2441 ± 1254</td>
<td>1.38 [1.08-1.77]</td>
<td>0.01(^d)</td>
</tr>
</tbody>
</table>

\(^a\) Multivariable models were adjusted for age (continuous), BMI (continuous), smoking status (current smokers, former smokers and non-smokers), season of blood draw (a priori-defined periods: October-November/December-January-February/March-April-May), height (continuous), alcohol intake (continuous), physical activity (irregular/\(<\;1\;h/d\) walking equivalent/\(\geq\;1\;h/d\) walking equivalent), education level (primary/secondary/superior), family history of breast cancer (yes/no), number of children (continuous), and use of hormone replacement therapy for menopause (yes/no) (reference model). Tests for linear trend were performed using the continuous variables. ORs were presented for an increment of 1 SD for each metabolite.

\(^b\) Metabolites were classified according to Sumner et al (46) concerning the levels of confidence in the identification process: identified (level 1: confirmed by standard), putatively annotated (level 2: based upon physicochemical properties and/or spectral similarity with public/commercial spectral libraries).

\(^c\) False discovery rate (FDR) after Benjamini Hochberg correction for multiple testing =0.1

\(^d\) FDR after Benjamini Hochberg correction for multiple testing =0.2

SD, Standard Deviation
Table 3 Associations between the metabolomic patterns derived by PCA and breast cancer risk from multivariable conditional logistic regressiona - SU.VI.MAX cohort, France (1994-2007)

<table>
<thead>
<tr>
<th>PCA factorsb</th>
<th>cases/controls</th>
<th>OR [95% CI]</th>
<th>P-trend</th>
<th>Corrected P-trendc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1</td>
<td>200/200</td>
<td>1.38 [1.11-1.73]</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Factor 2</td>
<td>200/200</td>
<td>1.47 [1.16-1.85]</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Factor 3</td>
<td>200/200</td>
<td>0.49 [0.37-0.65]</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Factor 4</td>
<td>200/200</td>
<td>1.49 [1.17-1.89]</td>
<td>0.001</td>
<td>0.002</td>
</tr>
</tbody>
</table>

a Multivariable models were adjusted for age (continuous), BMI (continuous), smoking status (current smokers, former smokers and non-smokers), season of blood draw (a priori-defined periods: October-November/December-January-February/March-April-May), height (continuous), alcohol intake (continuous), physical activity (irregular/\(<1\)h/d walking equivalent/\(\geq 1\)h/d walking equivalent), education level (primary/secondary/superior), family history of breast cancer (yes/no), number of children (continuous), and use of hormone replacement therapy for menopause (yes/no) (reference model). Tests for linear trend were performed using the continuous variables. Odds ratio are computed for a 1 point increment of the continuous variable.

b The four first PCA factors (metabolomic patterns) explained more than 36% of total variability. The first factor was notably characterized by higher plasma levels of valine and 5-aminovalerlic acid, the second factor was in particular characterized by higher plasma levels of phenylalanine, valine, 5-aminovaleric acid and tryptophan, the third by lower plasma level of pregnene-triol sulfate and the fourth by higher plasma levels of phenylalanine, valine 5-aminovaleric acid, GGT and glutamine (loading values \(\geq 0.20\)). Moreover, several unidentified ions also characterized these four factors.

c P-trend after Benjamini Hochberg correction for multiple testing.
Figure Legends

Figure 1 Summary of proposed mechanistic interpretations for some putative pathways regarding observed metabolites variations in plasma of women who will develop breast cancer in subsequent years.

Among the possible interpretations, our results could suggest a perturbation of energy and amino acids metabolism, a set-up of conditions favoring cell proliferation, inflammation, and oxidative stress in women who will develop breast cancer involving environmental exposure and microbiota metabolism.
Plasma metabolomic signatures associated with long-term breast cancer risk in the SU.VI.MAX prospective cohort

Lucie Lécuyer, Céline Dalle, Bernard Lyan, et al.

Cancer Epidemiol Biomarkers Prev Published OnlineFirst June 4, 2019.

Updated version Access the most recent version of this article at: doi:10.1158/1055-9965.EPI-19-0154
Supplementary Material Access the most recent supplemental material at: http://cebp.aacrjournals.org/content/suppl/2019/06/01/1055-9965.EPI-19-0154.DC1
Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, use this link http://cebp.aacrjournals.org/content/early/2019/06/04/1055-9965.EPI-19-0154. Click on "Request Permissions" which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.