Abstract

The association between leisure-time physical activity (LTPA) and male breast cancer risk is unclear. In the Male Breast Cancer Pooling Project, with 449 cases and 13,855 matched controls, we used logistic regression with study stratification to generate adjusted ORs and 95% confidence intervals (CI) for LTPA tertiles and male breast cancer risk. Compared with low LTPA, medium and high LTPA were not associated with male breast cancer risk (OR, 1.01; 95% CI, 0.79–1.29; 0.90, 0.69–1.18, respectively). In joint-effects analyses, compared with the referent of high body mass index (BMI; ≥25 kg/m²)/low LTPA, neither medium nor high PA was associated with risk among high BMI men, but normal BMI men (<25 kg/m²) with low or medium LTPA were at a non-significant 16% reduced risk and those with high LTPA were at a 27% reduced risk (OR, 0.73; 95% CI, 0.50–1.07). Physical activity alone may not confer protection against male breast cancer risk.

Introduction

Male breast cancer is a rare disease, with a lifetime risk of 1 in 1,000. Due in part to the rarity of this cancer, relatively few studies have examined lifestyle-related etiologic factors. Leisure-time physical activity (LTPA) has been consistently associated with a lower risk of postmenopausal female breast cancer (1, 2), but associations with male breast cancer are unclear. Previous studies of physical activity and male breast cancer risk suggest inverse—but not statistically significant—associations (3–6), yet were based on small case numbers and study characteristics or designs [proxy respondents (6) and case–control (4, 5)] that may capture physical activity differently than a prospective design with self-reported data. In this analysis, with more cases and predominately prospectively collected data, we hypothesized that moderate to vigorous-intensity LTPA would be associated with a lower male breast cancer risk.

Materials and Methods

Methods for the Male Breast Cancer Pooling Project (MBCPP) have been previously published (7). In short, the MBCPP identified all case–control or cohort studies with ≥10 cases using literature searches of PubMed, citations within published manuscripts, and advertisements at the National Cancer Institute Cohort Consortium meetings (7). Of the 21 studies identified for inclusion in the MBCPP, 10 had collected baseline information on LTPA [nine prospective nested case–control studies (8–16) and one retrospective case–control study (4)]. The two cohort studies and 10 case–control studies that were not included in our analysis did not ask detailed information on LTPA and thus were not eligible for this analysis. Characteristics of included studies are presented in Supplementary Table S1. Cases were defined by the International Classification of Diseases, 10th Edition code C50 from cancer registries, medical record, or self-report. All studies contributed de-identified data following approved data sharing agreements, as well as NCI and study center Institutional Review Board clearances. Participants gave informed consent by nature of study participation.

LTPA was harmonized across studies into categories of low, medium, and high. Studies with a single LTPA question on frequency of activity (AARP, JANUS, PHS, PLCO, Kaiser Permanente) ranged from four to six response levels. For example, in the Physicians’ Health Study (PHS), the frequency question was “How often do you exercise vigorously enough to work up a sweat?,” with six categorical choices ranging from daily to rarely/never. In these studies, we collapsed the categories to create a relatively even distribution for low, medium, and high. For studies with line items for more than one type of activity (Canada,
Cancer Epidemiol Biomarkers Prev; 24(12) December 2015

Arem et al.

CPS II-NC, EPIC, HPFS, MEC), we assigned metabolic equivalent hours per week, using intensity values previously assigned by individual studies and by referencing the updated Ainsworth Compendium of Physical Activities (17). Example activities from the Health Professionals Follow-up Study (HPFS) included separate line items with 10 categorical responses ranging from none to 11+ hour/week for walking outdoors, jogging, running, bicycling, lap swimming, tennis, squash, or calisthenics/rowing. We then divided the study-specific distributions into categories of low (<33rd percentile), medium (33<66th percentile), and high (≥66th percentile) LTPA.

We used unconditional logistic regression with stratification by study to compute ORs and 95% confidence intervals (95% CI). We first created models adjusted for age and then additionally adjusted for race, education, marital status, diabetes history, alcohol, smoking status, and body mass index (BMI). We created missing categories for race, education, marital status, diabetes, and alcohol, as these covariates were missing for ≤5% of study subjects, and for alcohol, for which 13% were missing. Sensitivity analyses excluding observations with missing data yielded unaltered results. To assess influence by individual studies, we also performed analyses excluding one study at a time.

Because BMI was previously associated with male breast cancer risk in this population (7), and because joint effects of BMI and physical activity have been observed for female breast cancer risk, we created six categories to look at joint effects: high BMI (≥25 kg/m²) with (1) low (referent), (2) medium, or (3) high activity levels, and normal BMI (<25 kg/m²) with (4) low, (5) medium, or (6) high activity levels. We also stratified analyses by age, BMI, diabetes, smoking, and family history of breast cancer and assessed interactions using the Wald test. All analyses were performed using SAS V9.3 (SAS Institute Inc.). P values <0.05 were considered significant.

Results

This pooled analysis of 10 studies included 449 cases and 13,855 controls. More active men were more likely to be non-Hispanic white, college graduates, have a lower BMI, and were less likely to be current smokers or report diabetes (Table 1).

Compared with men reporting low LTPA, men reporting medium and high LTPA levels did not have a lower male breast cancer risk after adjustment for other risk factors (OR, 1.01; 95% CI, 0.79–1.29; 0.90, 0.69–1.18, respectively, Table 2). Results were similar after excluding one study at a time to test undue influence by an individual study (Supplementary Table S2).

In joint-effects analyses of BMI and LTPA, we found that among high BMI men (≥25 kg/m²), neither medium nor high LTPA was associated with risk (OR, 1.01; 95% CI, 0.76–1.34; 0.90, 0.66–1.24, respectively) compared with the referent group of low LTPA/high BMI. However, nonsignificant ~16% lower risks were observed among normal BMI men (<25 kg/m²) who reported either low or medium LTPA (OR, 0.83; 95% CI, 0.58–1.19; 0.84, 0.59–1.18, respectively), and a nonsignificant 27% lower risk was observed among men who had a normal BMI/high LTPA (OR, 0.73; 95% CI, 0.50–1.07; Table 2). Stratified analyses did not suggest statistically significant interactions by median age, BMI, diabetes, or family history of breast cancer (all Pinteraction values ≥0.05; Supplementary Table S3). There was a stronger inverse association between LTPA and male breast cancer among current smokers (OR, 0.25; 95% CI, 0.07–0.85) than among never or former smokers, with the Pinteraction showing borderline significance (P = 0.05).

Discussion

Previous studies of LTPA and female breast cancer risk have suggested stronger risk reductions of about 25% among postmenopausal normal weight women compared with no association for obese women (2), which is similar to the magnitude of association we found among active men with a normal BMI.

Published male breast cancer studies have shown nonsignificant inverse associations with LTPA, but were based on limited numbers (range, 81–178; refs. 3–6) and faced challenges of collecting PA data from proxy respondents of deceased men (6) and retrospective (case–control designs), which may

Table 1. Baseline characteristics of the pooled study populations of male breast cancer cases (n = 449) and controls (n = 13,855)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Low (n = 3,316)</th>
<th>Medium (n = 5,064)</th>
<th>High (n = 3,625)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases/controls</td>
<td>157/3,884</td>
<td>177/5,757</td>
<td>115/4,214</td>
</tr>
<tr>
<td>Age at entry (years), mean (SD)</td>
<td>61.0 (7.9)</td>
<td>61.7 (7.6)</td>
<td>62.1 (7.7)</td>
</tr>
<tr>
<td>Race, % (white)</td>
<td>3,499 (86.6)</td>
<td>5,293 (89.9)</td>
<td>3,882 (90.2)</td>
</tr>
<tr>
<td>Married, %</td>
<td>3,316 (85.3)</td>
<td>5,064 (87.5)</td>
<td>3,625 (87.5)</td>
</tr>
<tr>
<td>BMI (kg/m²), mean (SD)</td>
<td>27.3 (4.4)</td>
<td>26.7 (3.8)</td>
<td>26.0 (3.3)</td>
</tr>
<tr>
<td>Smoking status, %</td>
<td>1,269 (32.3)</td>
<td>2,006 (34.9)</td>
<td>1,479 (35.2)</td>
</tr>
<tr>
<td>Never</td>
<td>1,990 (50.7)</td>
<td>3,131 (54.4)</td>
<td>2,352 (56.0)</td>
</tr>
<tr>
<td>Current</td>
<td>668 (17.0)</td>
<td>615 (10.7)</td>
<td>372 (8.9)</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>3,333 (91.0)</td>
<td>5,280 (91.7)</td>
<td>3,832 (93.0)</td>
</tr>
<tr>
<td>No</td>
<td>328 (8.9)</td>
<td>480 (8.3)</td>
<td>288 (7.0)</td>
</tr>
<tr>
<td>Yes</td>
<td>17.3 (40.6)</td>
<td>15.4 (33.7)</td>
<td>15.7 (30.3)</td>
</tr>
<tr>
<td>Educational level, %</td>
<td>683 (17.3)</td>
<td>457 (7.9)</td>
<td>389 (9.2)</td>
</tr>
<tr>
<td>Less than high school</td>
<td>625 (15.8)</td>
<td>803 (13.8)</td>
<td>650 (15.3)</td>
</tr>
<tr>
<td>High school graduate</td>
<td>914 (23.1)</td>
<td>1,485 (25.5)</td>
<td>985 (23.2)</td>
</tr>
<tr>
<td>Some college/vocational school</td>
<td>1,728 (43.8)</td>
<td>3,069 (52.8)</td>
<td>2,229 (52.4)</td>
</tr>
</tbody>
</table>

*Physical activity tertiles were created from study-specific distributions and then pooled.

†Cohort control subjects were incidence-density matched to cases on sex, race, study center, date of birth, date of entry, and exit date.

Case–control subjects were frequency matched on age and were sampled from provincial health insurance plans in Canada (coverage of >95% of Canadians).
introduce recall bias (4, 5). Reasons for a possible interaction of LTPA with BMI remain unknown, but may reflect the cumulative effect of reduced estrogen exposure for lean active men, supported by other findings from the MBCPP of elevated risks being associated with both high BMI (7) and higher estradiol (18).

Model 1 included stratafication by cohort and was adjusted for age. Model 2 was additionally adjusted for race (white, black, and other), educational level (high school or less, some college, completed college), marital status (married and not married), history of diabetes (yes and no), alcohol consumption (none, 1-2 drinks/day, >2 drinks/day), and smoking status (never, former, and current).

Table 2. ORs and 95% CIs for physical activity and risk of male breast cancer (n = 449 cases/13,855 controls)

<table>
<thead>
<tr>
<th>Physical activity level</th>
<th>Low (<25 kg/m²)</th>
<th>Medium (25–<30 kg/m²)</th>
<th>High (≥30 kg/m²)</th>
<th>P trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>1.00 (0.81-1.24)</td>
<td>1.01 (0.80–1.28)</td>
<td>1.00 (0.79–1.29)</td>
<td>0.515</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.00 (0.71–1.39)</td>
<td>1.00 (0.80–1.28)</td>
<td>1.01 (0.79–1.29)</td>
<td>0.362</td>
</tr>
<tr>
<td>Model 3</td>
<td>1.00 (0.78–1.28)</td>
<td>1.00 (0.79–1.28)</td>
<td>1.01 (0.79–1.29)</td>
<td>0.443</td>
</tr>
</tbody>
</table>

Joint effectsab

High BMI (>25 kg/m²) 1.00
Normal BMI (25–<30 kg/m²) 0.83 (0.58–1.19)

Joint effectsab

High BMI (>25 kg/m²) 1.00
Normal BMI (25–<30 kg/m²) 0.84 (0.59–1.18)

Joint effectsab

High BMI (>25 kg/m²) 1.00
Normal BMI (25–<30 kg/m²) 0.73 (0.50–1.07)

Model 1 included stratification by cohort and was adjusted for age.

Model 2 was additionally adjusted for race (white, black, and other), educational level (high school or less, some college, completed college), marital status (married and not married), history of diabetes (yes and no), alcohol consumption (none, 1-2 drinks/day, >2 drinks/day), and smoking status (never, former, and current).

Model 3 was additionally adjusted for BMI (<18.5, 18.5–<25, 25–<30, 30– kg/m²).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): L.A. Brinton, S.M. Gapstur, L.A. Habel, K. Johnson, L.N. Kolonel, V.A. McCormack, K.B. Michels, H.D. Sesso, G. Ursin, S.K. Van Den Eeden, E. Weiderpass, M.B. Cook.

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): L.A. Brinton, S.K. Van Den Eeden, E. Weiderpass, M.B. Cook, C.E. Matthews.

Study supervision: L.A. Brinton, E. Weiderpass, M.B. Cook, C.E. Matthews.

Grant Support

H. Arem, L.A. Brinton, S.C. Moore, M.B. Cook, and C.E. Matthews are supported by the Intramural Research Program at the NIH, Bethesda, Maryland. The Physicians’ Health Study was supported by grants CA 097193, CA 34944, CA 40360, HL 26490, and HL 34505 from the NIH (to H.D. Sesso). The Health Professionals’ Follow-Up Study was supported by research grant CA 167552 from the NCI, NIH (to K.B. Michels). Support for MEC was provided by NIH/NCI under grant number R37CA54281 (to L.N. Kolonel). The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention Study II cohort (to S.M. Gapstur).

Received June 15, 2015; revised August 20, 2015; accepted August 21, 2015; published OnlineFirst September 24, 2015.

References

Physical Activity and Risk of Male Breast Cancer

Hannah Arem, Louise A. Brinton, Steven C. Moore, et al.

Cancer Epidemiol Biomarkers Prev Published OnlineFirst September 24, 2015.

Updated version

Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-15-0588

Supplementary Material

Access the most recent supplemental material at:
http://cebp.aacrjournals.org/content/suppl/2015/09/24/1055-9965.EPI-15-0588.DC1

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, use this link:
http://cebp.aacrjournals.org/content/early/2015/11/16/1055-9965.EPI-15-0588. Click on "Request Permissions" which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.