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Abstract

Background and Aims: Proteases play a critical role in tumorigenesis and are upregulated in colorectal
cancer and neoplastic polyps. In animal models, cathepsin B (CTSB)-activatable imaging agents show high
enzyme activity within intestinal tumors.

Methods: We conducted a prospective cohort study of 558 men and women with colon cancer with tumors
that were accessible for immunohistochemical assessment. We used Cox proportional hazards models, stratified
by stage, to compute colon cancer—specific and overall mortality according to tumoral expression of CTSB.

Results: Among 558 participants, 457 (82%) had tumors that expressed CTSB (CTSB positive) and
101 (18%) had tumors that did not express CTSB (CTSB negative). CTSB expression was not associated with
disease stage (P = 0.19). After a median follow-up of 11.6 years, there were 254 total and 155 colon cancer—
specific deaths. Compared with participants with CTSB-negative tumors, participants with CTSB-positive
tumors experienced a multivariate hazard ratio for colon cancer-specific mortality of 1.99 (95% confidence
interval, 1.19-3.34) and overall mortality of 1.71 (95% confidence interval, 1.16-2.50). CTSB expression was
independently associated with KRAS (P = 0.01) and BRAF mutation (P = 0.04), but not microsatellite
instability status, CpG island methylator phenotype status, PIK3CA mutation, LINE-1 methylation,
TP53 expression, or PTGS2 (cyclooxygenase-2) expression. Among 123 individuals with adenomas,
91% expressed CTSB.

Conclusions: As assessed by immunohistochemistry, CTSB is expressed in the vast majority of colon
cancers, independent of stage, and is significantly associated with higher risk of colon cancer—specific
and overall mortality.

Impact: These results support the potential of CTSB a target for image detection of neoplastic lesions in

humans. Cancer Epidemiol Biomarkers Prev; 19(11); 2777-85. ©2010 AACR.

Introduction

Proteases play a critical role in tumorigenesis by facil-
itating rapid cell cycling, mediating local invasion, fueling
angiogenesis, and promoting metastasis (1). Specifically,
cathepsin B (CTSB, the Human Genome Organisation-
approved official gene symbol), a lysosomal cysteine
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protease, has been shown to be involved in tumor initi-
ation, hyperproliferation, and dedifferentiation, and is
upregulated in early human colon adenomas, carcino-
mas, and metastatic lesions (2-7). The central role of
CTSB in carcinogenesis suggests that it is not only a
promising target for therapy or chemoprevention, but
also for molecular detection of neoplasia (8).
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In previous work, we developed a novel class of optical
imaging agents that are “smart” near IR (NIRF) protease-
activatable agents that become brightly fluorescent in
areas of increased CTSB expression, as seen in colorectal
neoplasia (9, 10). These agents offer high tumor to back-
ground ratio compared with nonspecific agents, due to
their selective activation. The agents are optically silent
in their native (quenched) state and become highly fluores-
cent after enzyme-mediated release of fluorochromes,
resulting in in vitro signal amplification of several hundred-
fold. In Apc™™/* mice, immunohistochemistry and fluores-
cent antibody microscopy show that CTSB is expressed
throughout the adenoma in epithelial and stromal cells (8).
When mice were injected i.v. with the cathepsin-activatable
agent, adenomas became highly fluorescent, indicative of
high protease activity, and were easily visualized with a
target to background ratio of 9:1 using NIRF imaging as
opposed to 1:1 for standard white light imaging (8).

Given this promising preclinical data, we examined the
importance of CTSB in human colonic carcinogenesis by
determining the overall prevalence of CTSB expression in
human colon tumors. Furthermore, given the key role of
CTSB in the pathogenesis of tumor growth and invasion,
we specifically assessed the relationship between CTSB
expression on prognosis and other important tumoral
molecular markers in colon cancer.

Materials and Methods

Study population

The Nurses' Health Study (NHS) was established in
1976 when 121,701 U.S. female registered nurses, 30 to
55 years of age, completed a mailed questionnaire. The
Health Professionals Follow-up Study (HPFS) was
established in 1986 as a parallel cohort of 51,529 U.S.
male dentists, optometrists, osteopaths, podiatrists,

Figure 1. CTSB expression in
colon cancer. A and B, strong
expression of CTSB in colon cancer
cells (white arrows). C and D, weak
expression of CTSB in colon cancer
cells (white arrowheads). E and

F, negative expression of CTSB in
colon cancer cells (black arrows).
Stromal cells serve as an internal
positive control for CTSB expression
(arrowhead). A, C, and E, low
magnification; B, D, and F, high
magnification.
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Table 1. Clinical and pathologic features of colon cancer according to cathepsin B expression
Clinical or pathologic Total CTSB (-) CTSB (+) P
feature No. (%) No (%) No (%)
All cases 558 101 457
Gender 0.02
Male 192 (34) 25 (25) 167 (37)
Female 366 (66) 76 (75) 290 (63)
Mean age + SD, years 67.2 £ 8.2 67.8 + 8.8 67.1 + 8.1 0.43
Body mass index (kg/m?) 0.58
<30 459 (82) 85 (84) 374 (82)
>30 99 (18) 16 (16) 83 (18)
Family history of colorectal 0.27
cancer in any first-degree
relative
() 418 (75) 80 (79) 338 (74)
) 140 (25) 21 (21) 119 (26)
Tumor location 0.87
Right 344 (62) 63 (62) 281 (61)
Left 214 (38) 38 (38) 176 (39)
Stage 0.19
[ 108 (19) 21 (21) 87 (19)
Il 194 (35) 28 (28) 166 (36)
11l 150 (27) 36 (36) 114 (25)
\" 81 (15) 12 (12) 69 (15)
Missing 25 (4.5) 4 (4.0) 21 (4.6)
Tumor grade 0.28
Low 500 (90) 87 (87) 413 (91)
High 56 (10) 13 (13) 43 (9.4)
Mucinous component 0.54
0% 269 (52) 45 (51) 224 (53)
>0% 245 (48) 46 (49) 199 (47)
Signet ring cell component 0.24
0% 428 (88) 76 (84) 352 (89)
>0% 58 (12) 14 (16) 44 (11)

pharmacists, and veterinarians, who were 40 to 75 years
of age at entry. In each cohort, with a follow-up rate of
92%, we mailed biennial questionnaires to update infor-
mation and identify new cases of cancer.

On each biennial follow-up questionnaire, participants
were asked whether they had had a diagnosis of colon
cancer during the prior two years. When a participant re-
ported a diagnosis of colon cancer, we asked for permis-
sion to obtain hospital records and pathology reports.
Study physicians, blinded to exposure data, reviewed
all medical records related to colon cancer, classifying
disease stage according to the 6th version of the American
Joint Committee on Cancer. We had previously described
our procurement of colon cancer paraffin-embedded
specimens in detail (Supplementary Materials; ref. 11).
For this analysis, we included the 558 participants (366
women from NHS and 192 men from HPFS) with path-
ologically confirmed colon adenocarcinoma that were
diagnosed through 2004 and for whom we were able to
obtain sufficient amounts of tumor tissue for immunohis-

tochemistry. Baseline characteristics among participants
with colon cancer with available tissue for analysis were
largely similar to those without available tissue. We ex-
cluded participants if they had reported any cancer (other
than nonmelanoma skin) previous to colon cancer diagno-
sis. We also requested paraffin-embedded tissue samples
of colorectal polyps that were >1 cm in diameter on endos-
copy among a separate group of 123 men and women
enrolled in these cohorts. The institutional review boards
at the Brigham and Women's Hospital and the Harvard
School of Public Health approved this study.

Immunohistochemical assessment and
molecular assays

We did immunohistochemistry of CTSB, PTGS2
(cyclooxygenase-2, COX-2), and TP53 from tissue micro-
arrays of our tumor specimens (Supplementary Methods;
Fig. 1; refs. 11, 12). A pathologist (Y.B.), blinded to any
other participant data, recorded cytoplasmic CTSB ex-
pression as absent, weak, moderate, or strong expression.
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Among the 558 tumors, 101 tumors showed no CTSB ex-
pression, 253 showed weak expression, 184 showed mod-
erate expression, and 20 showed strong expression. In our
initial exploratory analysis, we did not observe a signifi-
cant relationship between CTSB levels (negative, weak,
moderate, or strong) and other molecular and clinical fea-
tures (P > 0.05). In our previous data from murine models,
we showed the ability of NIRF cathepsin-specific mole-
cular agents to identify tumors with weak to strong levels
of CTSB expression using immunohistochemistry. Thus,
for further analysis in this study, we defined tumors with
weak to strong cytoplasmic expression of CTSB as CTSB
positive and tumors with absent cytoplasmic expression
of CTSB as CTSB negative (Fig. 1). A random sample of
cancers was reread by a second pathologist and the
concordance between readers was 0.92 (k = 0.62, P <
0.001; n = 108) for PTGS2 (COX-2), 0.87 (x = 0.75, P <
0.0001; n = 108) for p53, and 0.87 (x = 0.62, P < 0.001;
n = 364) for CTSB. Methylation analyses, sequencing of
KRAS, BRAF, and PIK3CA, and microsatellite instability
(MSI) analysis have each been previously described
(Supplementary Materials; refs. 13-21).

Ascertainment of death
We included deaths that occurred after diagnosis of co-
lon cancer and before June 1, 2008. We identified deaths

through the National Death Index and next of kin. Mor-
tality follow-up was >98% complete (22). For all deaths,
we sought information to determine the cause, including
death certificates, and, when appropriate, requested per-
mission from next of kin to review medical records.

Statistical analysis

As in our prior analysis (11), we pooled data from both
cohorts and tested for heterogeneity using the Q statistic.
We observed no heterogeneity between the cohorts re-
garding the association of CTSB and colon cancer-specific
survival (P = 0.75 for Cochran's Q test; ref. 23). For categ-
orical data, the X2 test was done. To assess independent
relations of CTSB expression with other variables, a
multivariate logistic regression analysis was carried out
(Supplementary Materials). For survival analyses, parti-
cipants eligible for analysis accrued follow-up time
beginning on the month of their diagnosis of colon cancer
and ending on the month of death from colon cancer,
death from any cause, or June 1, 2008, whichever came
first. We categorized participants according to CTSB pos-
itive versus CTSB negative. We used Kaplan-Meier
curves and the log-rank test to compare colon cancer—
specific and overall mortality according to CTSB expres-
sion. To assess the effect of CTSB independent of stage,
we used Cox proportional hazards modeling with tumor

Table 2. Molecular features of colon cancer according to CTSB expression
Molecular feature Total CTSB (-) CTSB (+) P
No. (%) No. (%) No. (%)

MSI status 0.84
MSI-low/MSS 319 (79) 45 (78) 274 (79)
MSI-high 87 (21) 13 (22) 74 (21)

CIMP status 0.49
CIMP-low/0 326 (81) 45 (78) 281 (81)
CIMP-high 77 (19) 12 (22) 64 (19)

BRAF mutation 0.43
) 340 (84) 50 (88) 290 (84)
(+) 64 (16) 7 (12) 57 (16)

KRAS mutation 0.01
=) 254 (63) 44 (77) 210 (60)
(+) 152 (37) 13 (23) 139 (40)

PIK3CA mutation 0.76
) 300 (84) 42 (86) 258 (84)
(+) 56 (16) 7 (14) 49 (16)

LINE-1 methylation level 60.4 + 9.2 61.7 + 9.4 60.2 + 9.2 0.25
(mean + SD)

TP53 expression 0.63
) 264 (65) 40 (68) 224 (65)
+) 142 (35) 19 (32) 123 (35)

PTGS2 (COX-2) expression 0.72
=) 156 (38) 21 (36) 135 (39)
+) 251 (62) 37 (64) 214 (61)

Abbreviation: MSS, microsatellite stable.
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stage (I, IIA, IIB, IIIA, IIIB, IIIC, IV, unknown) as a strat-
ifying variable, which enabled us to avoid residual
confounding and overfitting. To further adjust for other
potential confounding variables, we constructed a multi-
variate, stage-matched Cox proportional hazards model
(Supplementary Materials). For all analyses, we used SAS
version 9.1.3. All P values are two-sided and a level of sig-
nificance <0.05 was considered statistically significant.

Results

Among the 558 eligible participants with colon cancer,
we documented 254 total deaths with 155 deaths due to
colon cancer. For participants who are alive, the median
time of follow-up from date of diagnosis was 11.6 years
(interquartile range, 3.9-26.3 years). A total of 457 (82%)
participants had cancers that expressed CTSB (CTSB pos-
itive) and 101 (18%) had cancers that did not express
CTSB (CTSB negative). Baseline clinical characteristics
of the participants are shown in Table 1. Compared with
participants with CTSB-negative tumors, participants
with CTSB-positive tumors were more likely to be male.
Of note, CTSB expression did not vary according to stage
(P = 0.19). The number and percentage with CTSB
expression are as follows: stage I, 87 of 108 (81%); stage
II, 166 of 194 (86%); stage III, 114 of 150 (76%); stage 1V,
69 of 81 (85%).

A comparison of other molecular features in colon can-
cers according to expression of CTSB is shown in Table 2.
Compared with participants with CTSB-negative tumors,
participants with CTSB-positive tumors were more likely
to have an activating KRAS mutation. In contrast, there
did not seem to be a significant difference in MSI status,
CpG island methylator phenotype (CIMP) status, BRAF
mutation, PIK3CA mutation, LINE-1 methylation level,
TP53 expression, or PTGS* COX-2 expression. In a multi-
variate model adjusting for both clinical and molecular
features, participants with CTSB-positive cancers had
2.47 (95% confidence interval, 1.25-4.88) higher odds
of having a KRAS mutation and 2.47 (95% confidence
interval, 1.00-5.92) higher odds of having a BRAF
mutation (Table 3).

CTSB expression was associated with a significant in-
crease in risk of colon cancer—specific mortality (log-rank
P = 0.02; Fig. 2A) and an increase in overall mortality
(log-rank P = 0.005; Fig. 2B). This relationship remained
largely unchanged even after adjusting for stage or other
predictors of cancer recurrence (Table 4). Compared with
participants who had CTSB-negative cancers, the multi-
variate hazard ratio (HR) associated with having a
CTSB-positive cancer was 1.99 [95% confidence interval
(95% CI), 1.19-3.34] for colon cancer—specific mortality
and 1.71 (95% CI, 1.16-2.50) for overall mortality. Addi-
tionally adjusting for MSI status, CIMP status, BRAF mu-
tation, PIK3CA mutation, LINE-1 level, TP53 expression,
or PTGS2 (COX-2) expression did not materially alter
these findings (multivariate HR, 2.20; 95% CI, 1.15-4.20

Table 3. Multivariate analysis of the relationship
of other molecular features with CTSB expression
in colon cancer

Variables in the final Multivariate OR P
model for CTSB (95% Cl)

KRAS mutation 2.47 (1.25-4.88) 0.009
BRAF mutation 2.47 (1.00-5.92) 0.049
Male gender 1.85 (0.96-3.56) 0.065
LINE-1 hypomethylation 2.35 (0.85-6.49) 0.098

(for a 30% decrease)

NOTE: Multivariate logistic regression analysis initially in-
cluded age, sex, body mass index, tumor location, stage,
tumor grade, mucinous component, signet ring cell com-
ponent, MSI, CIMP, PTGS2, TP53, LINE-1 methylation,
KRAS, PIK3CA, and BRAF. Backward stepwise elimination
with threshold of P = 0.20 was used to select variables in
the final model.

Abbreviation: OR, odds ratio.

for colon cancer—specific mortality, and multivariate
HR, 1.89; 95% ClI, 1.18-3.00 for overall mortality).

We examined whether the influence of CTSB expres-
sion on colorectal cancer—specific survival was modified
by any of the clinical, pathologic, and molecular vari-
ables. We did not observe a significant interaction be-
tween CTSB expression and any of the covariates (all
Pinteraction > 0.16). Notably, the effect of CTSB did not sig-
nificantly differ between the two independent cohort
studies (Pinteraction = 0.71). In addition, there was no
significant interaction between CTSB and tumor stage
(P interaction = 098) or tumor location (P interaction = 085)

Because CTSB is a promising target for molecular im-
aging agents in murine models of adenomatous polyps,
we also examined the prevalence of CTSB expression in
human adenomas. Among a separate group of 123 pa-
tients enrolled in these cohorts who had polyps >1 cm
in diameter on endoscopy, we found that 112 of 123
(91%) cases expressed CTSB. Among the 101 adenomas
in which we had complete size and histologic data, we
found that CTSB expression was independent of adeno-
ma size (P = 0.45) and histology (P = 0.28). The number
and percentage that were CTSB positive according to size
are as follows: 1.0 to 1.5 cm in diameter, 31 of 35 (89%);
1.6 to 2.0 cm in diameter, 21 of 26 (81%); >2.0 cm in di-
ameter, 31 of 40 (78%). The number and percentage that
were CTSB positive according to histology are as follows:
tubular, 54 of 69 (78%); tubulovillous, 24 of 26 (92%);
villous, 5 of 6 (83%).

Discussion
In summary, we observed that the CTSB proteases are

overexpressed in the vast majority of human colon
adenoma and cancers, independent of stage. CTSB
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Figure 2. Survival of colon cancer patients
according to CTSB expression status. A, colon
cancer—specific survival. B, overall survival.
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expression was significantly associated with an increased
risk of colon cancer-specific and overall mortality. Over-
all, CTSB was not associated with other molecular fea-
tures of colon cancer except for the presence of KRAS
and BRAF mutations. Our data support the potential
for CTSB as a target for molecular detection of neoplasia
and therapeutic intervention.

Our data are supported by other studies that have
shown that synthesis and secretion of CTSB is increased
in the extracellular environment of colon cancers (2, 24).
CTSB has been shown to play an essential role in disrupt-
ing the extracellular matrix barriers between tumors and
surrounding tissue, thereby facilitating invasion and me-
tastasis (8). A number of observations implicate CTSB in
tumor progression: (a) inhibitors of CTSB retard metasta-
ses and in vitro growth (25); (b) genetic modulation of
CTSB favorably alters the invasive properties of tumor

cells (26); (c) CTSB levels correlate with tumor aggres-
siveness and angiogenesis (8, 27); and (d) serum levels of
CTSB are significantly higher in patients with colorectal
cancer and adenoma than in tumor-free controls (4, 28,
29). Our results are generally consistent with two previous
smaller studies that also showed that increased tissue
expression or antigen activity levels of CTSB in colorectal
cancer were associated with significantly shorter patient
survival (7, 30). In another small study of 60 patients with
colorectal cancer, there was a trend toward worsened sur-
vival associated with tumor antigen levels of CTSB (5).
Prior studies have observed that CTSB antigen levels
or immunohistochemical staining does correlate with ad-
vancing Dukes' stage and progression from adenoma to
adenocarcinoma (2, 5, 6, 30). However, each of these
studies used varying techniques to assay for CTSB
levels as well as analytic methodology to relate levels
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to clinicopathologic parameters. Thus, it is difficult to di-
rectly compare these findings with our study, in which
we observed a high prevalence of CTSB expression in
all stages of disease, including premalignant adenomas.
Previous studies are consistent with our results, showing
high levels of CTSB in human colon cancer irrespective of
stage (3, 7), as well as in adenomas (2). Moreover, other
studies suggest that expression or activity levels may
actually peak in early-stage cancer and decline with
advanced disease (7, 31, 32). The importance of CTSB
across stages of neoplasia is also validated by prior data
showing uniform CTSB expression and high enzyme
activity in intestinal adenomas generated in mouse
models. In a previous study of Apc™™/* mice, we ob-
served, using immunohistochemistry and fluorescent an-
tibody microscopy, that CTSB is ubiquitously expressed
in intestinal adenomas, even in microscopic lesions that
are difficult to visualize through standard visual inspec-
tion. Compared with adjacent normal tissue, adenomas
had a 36% higher level of CTSB protein by Western
blot and 35% higher level of CTSB mRNA by reverse
transcriptase-PCR (8). Similarly, in a comprehensive pro-
teomic screening study, we identified CTSB as one of six
proteins upregulated in the plasma of tumor-bearing
APC**® mice with concomitant overexpression at the
RNA and protein level in adenoma tissue (24). Finally,
recent data have shown that genetic ablation of CTSB
attenuates polyposis in a hemizygous APC***® mouse
model (33). Taken together, these data support emerging
evidence that cathepsins have a role not only in facilitat-
ing cancer invasion and metastasis, but also in mediating
early, premalignant processes, such as tumor initiation,
hyperproliferation, and dedifferentiation (8, 34).
Interestingly, we found significant relations of CTSB
expression with KRAS and BRAF mutations. Experimen-
tal studies have shown a correlation between mutations
in KRAS and upregulation in CTSB expression (35, 36),
which are in agreement with our findings. KRAS and
BRAF mutations are not only critical events during carci-

nogenesis, but also important prognostic and/or predic-
tive markers in colon cancer patients. KRAS mutational
status of stage IV colorectal cancer is a predictive bio-
marker for anti-EGFR treatment, and BRAF mutation
identifies a subgroup of patients with unfavorable prog-
nosis (13, 37-41). Further understanding of the relation-
ship between CTSB and mutations in KRAS and BRAF
could potentially provide useful information for refine-
ment of therapeutic strategies. In this respect, our findings
may be of clinical interest if confirmed by additional
studies.

To exploit the potential role of cathepsins in colonic
neoplasia, we have developed biocompatible, optically
quenched, NIRF imaging agents that release fluoro-
chromes after enzyme activation by tumor-associated ca-
thepsin proteases (9). In our previous study, when we
injected APCM™/* mice with this cathepsin-activatable
reporter agent and imaged them ex vivo with NIRF, intes-
tinal adenomas became highly fluorescent, with a signal
intensity consistently higher than background (target to
background = 9:1 with NIRF imaging as compared with
1:1 with standard white light imaging; ref. 8). We have
confirmed these results with ex vivo imaging in tumor-
bearing APCA%80 mice (24). Using a novel NIRF mi-
croendoscope, we and others have shown the ability of
cathepsin-activatable agents to image adenoma and carci-
nomas in vivo among APCMI"/* mice, hemizygous APCA468
mice, mice with orthotopically implanted tumors, and APC
conditional knockout mice in which an adenovirus expressing
cre recombinase infection is focally delivered to the distal
colon. Several microscopic lesions that were not obviously
detectable by white light imaging were visualized in these
animal models using cathepsin-activatable agents with
NIRF imaging (33, 42-46). Taken together, these data pro-
vide proof of principle of the potential for targeting cathe-
psins for early detection of colonic neoplasia using NIRF
endoscopy (8). Thus, human translation of cathepsin-
activatable imaging platforms may provide a unique
opportunity to improve the broad detection of adenomas.

CTSB Total

Table 4. CTSB expression in colon cancer and overall mortality

Colon cancer—specific mortality

Overall mortality

expression Deaths/ Univariate Stage-

years (95% CI)

Multivariate Deaths/
person- HR (95% CI) matched HR HR (95% CIl) person- HR (95% Cl) matched HR HR (95% CI)

Univariate Stage- Multivariate

years (95% CI)

CTSB (-) 101 18/936 1 (referent) 1 (referent)

(18%)

CTSB (+) 457 137/3787 1.82 1.69
(82%) (1.11-2.97)  (1.03-2.79)

P 0.018 0.038

1 (referent)

(1.19-3.34)

1.99 222/3787 1.69 1.56 1.71
(1.17-2.45)  (1.07-2.27)  (1.16-2.50)
0.009 0.0057 0.021 0.0063

32/936 1 (referent) 1 (referent) 1 (referent)

NOTE: The multivariate, stage-matched conditional Cox regression model initially included age, year of diagnosis, sex, family
history of colorectal cancer, body mass index, tumor location, grade, mucinous component, and signet ring cell. Backward step-
wise elimination with threshold of P = 0.20 was used to select variables in the final model.
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We acknowledge several limitations of our study. Be-
yond causes of mortality, data on cancer recurrences were
not available in this cohort. Nonetheless, because median
survival for recurrent (metastatic) colon cancer was ap-
proximately 10 to 12 months during much of the time pe-
riod of this study (47), colon cancer-specific mortality
should be a reasonable surrogate for cancer-specific out-
come. In this cohort, we also had limited data on chemo-
therapy. It is unlikely, however, that differential receipt of
chemotherapy could explain the observed findings. First,
it is unlikely that chemotherapy use differed according to
tumoral CTSB expression because such data were not
available to patients or treating physicians. Second, the
association of CTSB and survival was similar among par-
ticipants with stage I or II disease, for which surgery
alone would be represent a standard of care, and among
those with stage III cancer, for which adjuvant chemo-
therapy would represent a routine approach. Third, be-
cause our cohort consisted of health professionals,
considerable heterogeneity in use of adjuvant chemother-
apy would be unlikely.

We were unable to obtain tumor tissue on all cases of
confirmed colon cancer over follow-up. It is unlikely,
however, that CTSB or mortality would be differential
according to retrieval success. Moreover, an assessment
of risk factors did not appreciably differ among those
participants for whom we were unable to obtain tumor
tissue (11). Finally, we did not assay other proteases which
may also be important in colorectal cancer, such as CTSL1
(5). We focused on CTSB given the greater near-term
potential to exploit targeting of this specific enzyme using
an already developed molecular imaging probe.

Consistent with the well-established role of proteases
in facilitating tumor invasiveness and spread, our find-
ings show that CTSB expression is significantly asso-
ciated with an increased risk of colon cancer—specific
and overall mortality. In addition, we show that CTSB
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