Family History and the Risk of Liver, Gallbladder, and Pancreatic Cancer

Esteve Fernandez, Carlo La Vecchia, Barbara D'Avanzo, Eva Negri, and Silvia Franceschi

Institut Municipal d’Investigacio Medica (IMIM), Universitat Autonoma de Barcelona (UAB), Dr. Alguader 80, 08003 Barcelona, Catalonia, Spain [E. F.]; Istituto di Ricerche Farmacologiche “Mario Negri,” Via Eritrea 62, 20157 Milano, Italy [E. F., C. C. L. V., B. D., E. N.]; Istituto di Biometria e Statistica Medica, Universita di Milano, Via Venezian 1, 20133 Milano, Italy [C. L. V.]; and Centro di Riferimento Oncologico, 33081 Aviano (Pordenone), Italy [S. F.]

Abstract

The relationship between family history of selected neoplasms in first-degree relatives and the risk of pancreatic, liver, and gallbladder cancer was investigated using data from a case-control study conducted in northern Italy on 320 histologically confirmed incident cases of liver cancer, 58 of gallbladder cancer, 362 of pancreatic cancer, and 1408 controls admitted to the hospital for acute, nonneoplastic, nondigestive tract disorders. Significant associations were observed between family history of hepatocellular carcinoma and primary liver cancer [relative risk (RR) = 2.4; 95% confidence interval (CI), 1.3 to 4.4], between family history of pancreatic cancer and pancreatic cancer (RR = 3.0; 95% CI, 1.4 to 6.6), and between family history of gallbladder cancer and gallbladder cancer (RR = 13.9; 95% CI, 1.2 to 163.9).

The elevated risk of liver cancer associated with family history was not materially modified by adjustment for tobacco, alcohol, and personal history of cirrhosis and hepatitis (RR = 2.9; 95% CI, 1.5 to 5.3). Similarly, the risk for pancreatic cancer did not appreciably change after allowance for tobacco, alcohol, dietary factors, and medical history of diabetes and pancreatitis (RR = 2.8; 95% CI, 1.3 to 6.3). This pattern of risk would support the existence of a genetic component in the familial aggregation of liver and pancreatic cancer. In terms of population attributable risk, approximately 3% of the newly diagnosed liver and pancreatic cancers would be related to this familial component.

Introduction

Although several case reports and some formal epidemiological studies have addressed the issue of familial aggregation of pancreas (1–6), liver (7–11), and gallbladder cancer (12, 13), few of them have provided relative or population attributable risk estimates according to selected indicators of family history of cancer, after allowance for major recognized potential confounding factors.

Further, since there is consistent evidence that a few digestive tract cancers share some common risk factors, either environmental (14) or potentially genetic (15), combined analyses of the pattern of risk for different cancers may provide useful information.

We decided therefore to analyze family histories of selected neoplasms in a case-control study of pancreatic, liver, and gallbladder cancer conducted in northern Italy.

Subjects and Methods

The data were derived from an ongoing series of case-control studies, on the basis of a network of teaching and general hospitals in the Greater Milan area (i.e., the largest urban area in northern Italy, with approximately 4 million inhabitants). Recruitment of cases of several digestive tract neoplasms and of the corresponding controls began in January 1983, and the present analysis is based on data collected before December 1992.

The general design of this investigation has been previously described (16, 17). In summary, trained interviewers identified and questioned cases of selected cancer sites and controls admitted to hospital using a structured questionnaire, including information on sociodemographic factors, personal characteristics, and lifestyle habits (such as smoking, alcohol, coffee, and other methylxanthine-containing beverage consumption), frequency of consumption of a few selected indicator foods, a problem-oriented medical history, and history of use of oral contraceptives and other female hormone preparations. A family history of cancer, including major digestive tract neoplasms (esophageal, stomach, large bowel, liver, gallbladder, and pancreatic), was specifically investigated for first-degree relatives.

Cases. The cases included in the present analysis were patients under 75 years of age with histologically confirmed incident (i.e., diagnosed within the year before interview) cancers of the liver (n = 320: 235 males and 85 females), gallbladder (n = 58: 27 males and 31 females), and pancreas (n = 362: 229 males and 133 females). They were admitted to the National Cancer Institute, to several university hospitals, and to the Ospedale Maggiore of Milan, which includes the four largest teaching and general hospitals in Milan. All the interviews were conducted in hospital and restricted to identified surviving patients, in the absence of search for proxies for deceased ones. No information was collected on patients without pathological confirmation, or

Received 7/8/93; revised 9/28/93; accepted 9/28/93.

1 This work was conducted within the framework of the CNR (Italian National Research Council) Applied Project “Clinical Applications of Oncological Research” (Contract No.92.02384.PF39) and with the contributions of the Italian Association for Cancer Research, the Italian League Against Tumours, Milan, and A. Marchegiano Borgomainerio. The stay of E. Fernandez at Istituto Mario Negri (Milan) was partly supported by a grant of the Commission for Research and Technology (CIRIT) of the Government of Catalonia (Grant EE93–128).

2 To whom requests for reprints should be addressed, at Istituto di Ricerche Farmacologiche “Mario Negri,” via Eritrea, 62-20157 Milano, Italy.
outside the network of participant hospitals. This, however, includes the major public hospitals in the area under investigation, where the large majority of patients with serious neoplasms is admitted. The median age was 60 years for liver, 61 years for gallbladder, and 60 years for pancreatic cancer cases.

Controls. The comparison group included 1408 patients (1031 males and 377 females) younger than 75 years (median age, 56 years) admitted for a wide spectrum of acute, nonneoplastic, nondigestive disorders to the Ospedale Maggiore and the same teaching hospitals where cases were recruited. Thirty-four percent had traumatic conditions, 17% had nontraumatic orthopedic disorders, 37% had acute surgical conditions, and 12% had other miscellaneous diseases, such as ear, nose, and throat, skin, or dental disorders. The catchment area of cases and controls was comparable: more than 80% of cases and controls resided in the same region, Lombardy, and more than 90% came from Northern Italy. Participation rate was over 95% for both cases and controls, as for cases, all the data were collected by direct interview in hospital. The distribution of cases of various cancer sites and controls according to sex and age group is shown in Table 1.

Data Analysis. RR\(^1\) and the corresponding 95% CI of pancreatic, liver and gallbladder cancer, according to history of selected cancers among first-degree relatives were first computed using unconditional multiple logistic regression (18), including terms for age, sex, area of residence, and education. In addition, when significant associations were observed, further allowance was also made for selected variables (smoking habits, alcohol consumption, and selected medical history).

Results. The distribution of cases of liver, pancreatic, and gallbladder cancer, and of the comparison group, according to history in first-degree relatives of cancers of the esophagus, stomach, intestines, liver, gallbladder, and pancreas is shown in Table 2. Thirty-eight (2.8%) individuals in the control group reported a family history of stomach cancer, 34 (2.5%) of liver cancer, and 22 (1.6%) of large bowel cancer. Among cases, the highest proportions were observed for family history of liver cancer among patients with primary liver cancer (6.1%), for family history of stomach cancer among cases of liver cancer (5.1%), gallbladder cancer (5.4%), and pancreatic cancer (3.9%), and for family history of pancreatic cancer among pancreatic cancer cases (3.9%).

The corresponding RRs are given in Table 3. Statistically significant increased risks were observed between family history of hepatocellular carcinoma and family history of liver cancer (RR = 2.4) and between family history of pancreatic cancer and pancreatic cancer (RR = 3.0). A tendency of excess risk was observed for a family history of a number of other digestive sites, specifically for liver cancer with RRs of 1.7, 2.0, and 2.4 for family history of stomach, intestine, and esophageal cancer, respectively. None of these estimates, however, was significant. History of gallbladder cancer was reported by one case of gallbladder cancer and two controls, yielding a RR of 13.9, which, however, had a very wide confidence interval. The relationships between family history of liver cancer and the risk of hepatocellular carcinoma and between family history of pancreatic cancer and the risk of pancreatic cancer are further analyzed in terms of simultaneous allowance for several known or potential confounding factors and in separate strata of sex and age (Table 4). With reference to liver cancer, adjustment for smoking, alcohol consumption, history of cirrhosis, and hepatitis did not appreciably modify the risk estimate (RR = 2.9). No significant interaction emerged with sex or age. Similarly, for pancreatic cancer, adjustment for smoking habits, alcohol consumption, history of pancreatitis, and diabetes did not

\(^1\) The abbreviations used are: RR, relative risk estimate; CI, confidence interval.
Taiwan (7) reported an elevated risk (RR = tens of cancer (9, 11) evidence of a familial aggregation for gallbladder cancer, cancers appear to be approximately 3-fold more frequent gallbladder, and pancreatic cancer. Liver and pancreatic The present analysis provides additional quantitative infor-

mation on the existence of a familial component for liver, gallbladder or pancreatic cancer, to the same hospitals there are the practically complete participation, the com-

parable catchment area of cases and controls (i.e., control individuals would have been referred, if affected by liver, gallbladder or pancreatic cancer, to the same hospitals where cases were identified), and the comparable setting of data collection (20). With reference to confounding, we were able to adequately allow for age, and a number of other potentially relevant covariates.

The present findings, therefore, indicate and quantify the presence of a significant family aggregation for both liver and pancreatic cancer. However, using this study design it was not possible to distinguish clearly between the environ-
mental or genetic component of such a familial aggre-
gation. For instance, with reference to liver cancer, the fa-
milial risk could be partly or largely due to family aggrega-
tion of hepatitis B infection, which is a major de-
terminant of primary liver cancer (17, 21–23). For pancreatic cancer, at least part of the association could be related to tobacco smoking, which is a recognized risk factor for the disease (24) and tends to aggregate in families, too.

The risk estimates, however, were not materially modified after adjustment for major identified covariates, including tobacco, alcohol, and past medical conditions related to liver cancer (cirrhosis and hepatitis) or pancreatic cancer (pancreatitis and diabetes). This would, therefore, support, although indirectly, the existence of a genetic component in the familial aggregation of liver and pancreatic cancer.

Acknowledgments
The authors wish to thank J. Bagnoud, I. Garinoldi, H. Martinez, P. Barbas, and the G. A. Pfeiffer Memorial Library staff for editorial assistance.

References
Family history and the risk of liver, gallbladder, and pancreatic cancer.

E Fernandez, C La Vecchia, B D'Avanzo, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/3/3/209

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cebp.aacrjournals.org/content/3/3/209.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.