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Abstract

Background: No consensus guideline has been established
for microsatellite instability testing in upper gastrointestinal
tract cancers. This study aims to determine whether targeted
cancer next-generation sequencing can accurately detect
microsatellite instability in upper gastrointestinal tract cancers
and screen for patients with Lynch syndrome.

Methods: In a cohort of 645 upper gastrointestinal tract
cancers, targeted next-generation sequencing assessed micro-
satellite instability by identifying characteristic insertion and
deletion mutations. Sequencing classification was compared
withmismatch repair protein IHC. Cancers withmicrosatellite
instability by sequencing were analyzed using a testing pro-
tocol to identify patients with Lynch syndrome.

Results: Sequencing identified microsatellite instability in
3.6% (23/645) of upper gastrointestinal tract cancers, includ-

ing 28% (8/29) of small intestinal and 9% (9/97) of gastric
carcinomas. In 20 cancers classified as having microsatellite
instability, 19 demonstrated loss of expression of MLH1,
PMS2, MSH2, or MSH6, and one cancer was indeterminate
by IHC. In contrast, 52 control cancers demonstrated retained
expression of all mismatch repair proteins. Using targeted
sequencing as the initial screening test, 1.1% (7/645) of
patients were identified to have pathogenic germline variants
confirming a diagnosis of Lynch syndrome.

Conclusions:Targeted cancer next-generation sequencing is
an accurate first-line test to detect microsatellite instability in
upper gastrointestinal tract cancers.

Impact: This study provides a proof of concept for the use of
targeted next-generation sequencing to detect microsatellite
instability and screen for Lynch syndrome.

Introduction
Microsatellite instability defines a characteristic genomic phe-

notype of insertion and deletion mutations in DNA repeat
regions (1). Microsatellite instability is caused by the genetic or
epigenetic inactivation of DNA mismatch repair genes MLH1,
MSH2, MSH6, or PMS2 and is a feature of some sporadic cancers
and cancers associated with Lynch syndrome (2).

Microsatellite instability is most commonly observed in colo-
rectal and endometrial cancers. Although the overall incidence of
upper gastrointestinal tract cancers is lower than that of colorectal

and endometrial cancers, recent studies evaluating large cancer
datasets have identified significant rates of microsatellite insta-
bility in cancers of the stomach and small intestine (3–5). Clinical
guidelines recommenduniversal screening for Lynch syndrome in
colorectal cancers (6), but no consensus guidelines currently exist
for microsatellite instability testing in upper gastrointestinal tract
cancers. The accurate identification of microsatellite instability in
upper gastrointestinal tract cancersmaydirectly benefit patients in
two ways. Microsatellite instability serves as a biomarker to
predict response to immune checkpoint inhibitor therapy in solid
tumors, including upper gastrointestinal tract cancers (5, 7).
Patients who have cancers with microsatellite instability may be
at increased risk for Lynch syndrome, and patients and affected
family members may benefit from genetic counseling and germ-
line testing (8).

As next-generation sequencing technology becomes clinically
available for cancer genotyping to identify actionable driver
mutations, we hypothesize that targeted cancer sequencing panels
can also detect microsatellite instability and be used as a primary
screening tool for Lynch syndrome in upper gastrointestinal tract
cancers.

Materials and Methods
Patients were prospectively enrolled in an institutional cohort

study for cancer genotyping. All participants provided written
informed consent for tumor sequencing. This studywas approved
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by the Institutional Review Board of the Dana Farber Cancer
Institute and the Partners Human Research Committee.

Targeted next-generation sequencing on tumor tissue was per-
formed as described previously (9). DNA was isolated from
formalin-fixed, paraffin-embedded (FFPE) tissue with at least
20% tumor nuclei. Indexed sequencing libraries were enriched
for exons of 275 genes (102 specimens) or 298 genes (543
specimens), encompassing 757,787 base pairs or 831,033 base
pairs of targeted genome, respectively, using solution-based
hybrid capture (Agilent SureSelect; Agilent Technologies). Mas-
sively parallel sequencing was performed using Illumina
HiSeq2500 (Illumina, Inc.). Data analysis was performed using
a custom pipeline, including Indelocator (GATK; Broad Institute)
for calling insertion and deletion variants.

Microsatellite instability as detected by next-generation
sequencing was defined as greater than 3 microsatellite indel
events per megabase (Mb) pair in the targeted genome, with
events defined as single nucleotide insertion or deletion variants
in homopolymeric DNA repeats of four or more nucleotides.
Cancerswith totalmicrosatellite indel events below this threshold
were classified as microsatellite stable. This criterion achieved
96% sensitivity and 99% specificity compared with mismatch
repair protein IHC in colorectal adenocarcinomas (10).

IHC for MLH1, PMS2, MSH2, and MSH6 protein expression
was performed as a case–control study. We tested all samples
classified to have microsatellite instability with available
pathology material. For each case sample predicted to have
microsatellite instability, at least two control samples classified
as microsatellite stable, matched by diagnosis, were tested. In
addition, IHC was performed on all samples with greater than 2
but fewer than 3 microsatellite indel events per megabase if

tissue was available. IHC and MLH1 promoter methylation
analyses were performed per standard laboratory protocol as
described previously (11).

Subsequent germline sequencing was performed using the
same targeted next-generation sequencing assay on DNA isolated
from nonneoplastic, FFPE tissue. The assay included coverage of
coding regions of mismatch repair genes MLH1, PMS2, MSH2,
and MSH6.

Results
Patient characteristics

A total of 645 upper gastrointestinal tract carcinomas were
sequenced, including 230 from esophagus or gastroesophageal
junction, 199 from pancreas, 97 from stomach, 60 frombile duct,
29 from small intestine, 19 from gallbladder, and 11 from
ampulla of Vater. A total of 426 patients (66%) were male, and
219 (34%)were female. Themedian age at the time of testing was
65.3 years (mean 64.2 years, range 19.0–93.6 years).

Detection of microsatellite instability in upper gastrointestinal
tract cancers by targeted sequencing

Microsatellite instability was identified by next-generation
sequencing in 23 of 645 (3.6%) upper gastrointestinal tract
cancers. Cancers classified to have microsatellite instability had
a median of 9.2 microsatellite indel events per megabase (mean
10.9, range 3.4–22.4). A total of 555 of 622 (89.2%) cancers
classified asmicrosatellite stable had 0microsatellite indel events.
Fifty-five of 622 (8.8%) cancers classified as microsatellite stable
had between 0 and 2 microsatellite indel events, and 12 of 622
(1.9%) had between 2 and 3microsatellite indel events (Fig. 1A).
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Figure 1.

Detection of microsatellite instability by next-generation sequencing. A, Number of microsatellite insertion or deletion events per megabase in upper
gastrointestinal tract cancers. Cancers with greater than three events per megabase were classified as havingmicrosatellite instability. B, Frequency of
microsatellite instability in upper gastrointestinal tract cancers, by site. C, Validation of microsatellite instability classification by sequencing compared with IHC.

Microsatellite Instability Detection by Cancer Sequencing
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Microsatellite instability was seen in 8 of 29 small intestinal
(28%), 9 of 97 gastric (9%), 1 of 60 biliary tract (2%), 3 of
230 esophageal or gastroesophageal junction (1.3%), 2 of 199
pancreatic (1.0%), 0 of 19 gallbladder, and 0 of 11 ampullary
cancers (Fig. 1B).

Validation of results with mismatch repair protein IHC
Twenty of 23 cases classified to have microsatellite instability

had available tumor tissue for IHC.Nineteen of 20 (95%) showed
loss of expression of at least one mismatch repair protein includ-
ing 14 with loss of MLH1 and PMS2, 2 with loss of PMS2, 2 with
loss of MSH2 and MSH6, and 1 with loss of MSH6. The final case
showed an unusual pattern, with nuclear staining of 5% of tumor
nuclei for all fourmismatch repair proteins, andwas interpreted as
indeterminate.

In contrast, all 45 controls classified as microsatellite stable
by sequencing showed intact staining for MLH1, PMS2, MSH2,
and MSH6 (Fig. 1C). In addition, all 7 cases with between 2

and 3 microsatellite indel events per megabase (classified as
microsatellite stable but near the threshold) and with available
tissue showed intact staining for MLH1, PMS2, MSH2, and
MSH6.

Identification of Lynch syndrome in patients with upper
gastrointestinal tract cancers

For cases with microsatellite instability and available
matched normal tissue, we followed a testing algorithm com-
monly applied to colorectal cancers to identify patients with
Lynch syndrome (Fig. 2). For cancers with loss of MLH1 and
PMS2 expression, MLH1 promoter methylation analysis was
performed. Of 10 neoplasms with MLH1 and PMS2 loss and
successful promoter methylation analysis, MLH1 promoter
methylation was identified in 7.

Nonneoplastic tissue for germline testing was available for 12
of 16 specimenswithmicrosatellite instability andwithoutMLH1
promotermethylation. Pathogenic Lynch syndrome variants were
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Figure 2.

Study protocol for the evaluation of
upper gastrointestinal tract cancers
to identify patients with Lynch
syndrome. Targeted next-
generation sequencing was
performed on 645 upper
gastrointestinal tract cancers.
Confirmatory IHC was performed
on cancers classified as having
microsatellite instability, andMLH1
promoter methylation analysis was
tested for cancers with loss of MLH1
and PMS2 expression. Germline
testing was performed on cases
suspicious for Lynch syndrome–
associated cancers, where
nonneoplastic tissue was available.
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identified in 7 patients, representing 1.1% of upper gastrointes-
tinal tract cancers in our cohort, including 4 small intestinal, 1
esophageal, 1 stomach, and 1 pancreatic cancers (Table 1; Sup-
plementary Data). Patients with Lynch syndrome had a median
age of 69.6 years (range 49.8–74.6 years). Upper gastrointestinal
tract cancer was the first clinical manifestation of Lynch syndrome
in 6 of 7 patients. Colonic adenocarcinoma was the first Lynch
syndrome–associated cancer in the other patient.

Somatic and second hit mutations in upper gastrointestinal
tract cancers with microsatellite instability

We evaluated the tumor sequencing data to identify somatic
second hit mutations in mismatch repair genes in patients with
Lynch syndrome. In 3 of 7 patients with Lynch syndrome, a
second loss-of-function mutation was identified in the tumor
specimen. These mutations included a splice site variant and two
nonsense variants. In 1 patient with an isolated MLH1 exon 13
germline deletion, the tumor specimen showed exon 13 deletion
involving both copies ofMLH1, and the second hit in this cancer
was most likely due to loss of heterozygosity of the MLH1 gene
locus. In the other 3 patients with Lynch syndrome, a second
somatic mutation was not identified, and the observed variant
allele fractions in tumor specimens did not support LOH. This
result might be due to limitations of the study, including possibly
limited ability to detect loss of heterozygosity in relatively low
tumor purity conditions or the presence of sequence or structural
alterations in noncoding regions of the gene, which were not
assessed by this assay. In two upper gastrointestinal tract cancers
with microsatellite instability, the full testing algorithm was
completed, and germline testing did not identify a pathogenic
Lynch syndrome variant. Tumor testing showed somatic inacti-
vation of mismatch repair genes by mutation or focal gene
deletion (Table 1).

Discussion
Next-generation sequencing has emerged as an effective

diagnostic tool in cancer care and is being rapidly adopted
into clinical practice (12). In addition to the identification of
oncogenic driver mutations, sequencing can identify patterns
of passenger mutations associated with microsatellite instabil-
ity. Multiple algorithms have been developed to identify micro-
satellite instability from sequencing assays (13–15), including
from targeted panel sequencing of tumor only speci-
mens (10, 16). Recently, tumor sequencing has been suggested
as a replacement for traditional Lynch syndrome screening
methods in colorectal cancer (17).

Compared with colorectal cancer, Lynch syndrome screening
in the upper gastrointestinal tract faces practical and diagnostic
challenges. Many upper gastrointestinal tract cancers are diag-
nosed from fine needle aspiration cytologic preparations or
small biopsies, and patients are frequently treated with neoad-
juvant therapy before surgical resection. These diagnostic and
treatment patterns limit the availability of diagnostic tumor
tissue and make accurate interpretation by IHC methods more
difficult. In this setting, targeted cancer sequencing is an appeal-
ing alternative for microsatellite instability evaluation. The
next-generation sequencing assay used in this study has been
validated to be performed on as little as 50 ng of tumor-
enriched input DNA.

Our findings demonstrate accurate microsatellite instability
assessment in upper gastrointestinal tract cancers by sequencing,
and our protocol identifies microsatellite instability in 3.6% and
pathogenic germline Lynch syndrome variants in 1.1% of upper
gastrointestinal tract cancers in this cohort. Although the frequen-
cy of microsatellite instability is lower than that of colorectal
cancers, the overall rates of microsatellite instability and Lynch
syndrome in upper gastrointestinal tract cancers are clinically
significant. Microsatellite instability is a biomarker for response
of solid tumors to immune checkpoint inhibitor therapy (5, 18),
and the identification of microsatellite instability provides a
treatment option for patients who have failed other systemic
therapies. In addition, the ability to screen for microsatellite
instability has implications for a subset of patients with upper
gastrointestinal tract cancers and Lynch syndrome. Our study has
identified 7 patients with Lynch syndrome in an unselected
cohort. These patients are of similar age compared with patients
with sporadic upper gastrointestinal tract cancers. Notably, three
of seven pathogenic Lynch syndrome variants are missense var-
iants, and two variants involve PMS2. Genetic alterations involv-
ingPMS2have been associatedwith amoderately increased risk of
colorectal and endometrial cancers, and the significance of PMS2-
associated Lynch syndrome in cancer risk at other sites is
controversial (19).

Patients with Lynch syndrome and affected family members
may benefit from enhanced surveillance for the prevention for
additional primary cancers, including increased frequency of
colonoscopy screening, consideration of prophylactic hysterecto-
my for women older than 40 years, and other emerging screening
strategies (20). These potential benefits are in addition to the
detection of driver oncogenic alterations, which may provide
druggable targets in upper gastrointestinal tract cancers or deter-
mine eligibility in clinical trials (21, 22).

Our findings support the use of targeted cancer sequencing
as a first-line screening test in upper gastrointestinal tract
cancers to identify microsatellite instability and patients with
Lynch syndrome. In laboratories already performing panel
sequencing to identify driver mutations, the adoption of a
similar protocol may benefit patients with upper gastrointes-
tinal tract cancers.
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