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Abstract

Background: SNP risk information can potentially improve
the accuracy of breast cancer risk prediction. We aim to review
and assess the performance of SNP-enhanced risk prediction
models.

Methods: Studies that reported area under the ROC curve
(AUCQ) and/or net reclassification improvement (NRI) for both
traditional and SNP-enhanced risk models were identified.
Meta-analyses were conducted to compare across all models
and within similar baseline risk models.

Results: Twenty-six of 406 studies were included. Pooled
estimate of AUC improvement is 0.044 [95% confidence
interval (CI), 0.038-0.049] for all 38 models, while estimates

Introduction

Breast cancer is the most common cancer among women and is
rising in incidence worldwide (1, 2). In this era of precision
medicine, there is interest in applying tailored breast cancer
screening and prevention strategies based on a woman's specific
risk (3). Many risk factors have been identified and risk prediction
models developed to quantify the combined effect of these factors
(4). These models can be used to estimate a woman's individual
risk, advise patients, inform screening and direct breast cancer
research (4, 5). The models include the Breast Cancer Risk Assess-
ment Tool (BCRAT; ref. 6), International Breast Intervention
Study (IBIS) Breast Cancer Risk Evaluation Tool (also known as
Tyrer—Cuzick model; ref. 7), BRCAPRO developed by Parmigiani
and colleagues (8), Breast and Ovarian Analysis of Disease Inci-
dence and Carrier Estimation Algorithm (BOADICEA; refs. 9, 10)
and the Breast Cancer Surveillance Consortium (BCSC) Breast
Cancer Risk Calculator (11, 12).
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by baseline models ranged from 0.033 (95% CI, 0.025-0.041)
for BCRAT to 0.053 (95% CI, 0.018-0.087) for partial BCRAT.
There was no observable trend between AUC improvement
and number of SNPs. One study found that the NRI was
significantly larger when only intermediate-risk women were
included. Two other studies showed that majority of the risk
reclassification occurred in intermediate-risk women.

Conclusions: Addition of SNP risk information may be
more beneficial for women with intermediate risk.

Impact: Screening could be a two-step process where a
questionnaire is first used to identify intermediate-risk indi-
viduals, followed by SNP testing for these women only.

Over the past few years, rapid expansion of next generation
DNA sequencing has led to an increasing discovery of breast
cancer predisposition genes beyond BRCAI and BRCA2. For
example, Shimelis and colleagues identified six other germline
mutations (BARD1, PALB2, RAD51D, BRIP1, RAD51C, and TP53)
that were associated with moderate to high risk of triple-negative
breast cancer, a notoriously aggressive subtype, in a case-control
study (13). Still, these genes account for only a small fraction of
familial (14) and sporadic breast cancer (15, 16), leaving most of
it unexplained. Research suggests that much of the missing
heritability could be polygenic (14). A single SNP is associated
with only low to moderate breast cancer risk. When combined,
their effects could be significant as they occur at higher frequencies
than high-penetrance mutations (17).

Over the past decade, many common, low-penetrance risk
alleles for breast cancer have been identified by genome-wide
association studies (GWAS) (14, 18, 19). The GWAS catalog, a
freely available database of published SNP-trait associations lists
about 53 studies and 1,272 associations related to breast cancer
(20). As many as 182 SNPs have been identified as being asso-
ciated with breast cancer, increasing our understanding of its
heritability (21). These SNPs have not been included in existing
breast cancer risk prediction models except for BCRAT, but
there is intention to include them in future versions (22), as
researchers investigate the potential of adding these SNPs to
traditional risk prediction models, which results in SNP-enhanced
risk prediction models.

Breast cancer screening aims for early detection of the disease
and reduction in the associated mortality (23). SNP-enhanced risk
prediction models may be able to estimate breast cancer risk more
accurately and can translate into a more efficient risk-based
screening program. Potential risk-adapted screening practices
include starting screening later in women with lower risk,
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increasing the recommended screening interval for these women
or possibly not inviting them for screening at all (24). High-risk
women could be recommended to begin screening at an earlier
age, attend annual screening (25) or even engage in supplemental
screening beyond mammography (26).

A couple of reviews have studied the performance of breast
cancer risk prediction models without SNPs. Anothaisintawee
and colleagues (27) found that discriminatory accuracy was
poor to fair in both internal validation [concordance statistic
(c-statistic): 0.53-0.66] and external validation (c-statistic:
0.56-0.63). This could be due to insufficient knowledge about
risk factors, heterogeneous nature of breast cancer, and varying
distributions of risk factors across populations. Another review
by Meads and colleagues (28) found that none of the models
reliably discriminate between those who did and did not
develop breast cancer. Models such as BRCAPRO, BOADICEA
and IBIS, which are preferred for women who come from
families known to have a BRCA1 or BRCA2 mutation were not
included. One other review by Evans and colleagues (29)
assessed discriminatory accuracy of models using data from
1,933 women who attended the Family History Evaluation and
Screening Program in United Kingdom. AUC was 0.716 for
Claus model, 0.735 for BCRAT, 0.737 for BRCAPRO and 0.762
for IBIS model.

In this systematic review and meta-analysis, we aim to identify
existing SNP-enhanced breast cancer risk prediction models and
assess their performance, measured by discriminatory accuracy
and improvement in predictive ability (AUC and NRI). The extent
of improvement in performance, from the addition of genetic
information in the SNP-enhanced risk models, was also
evaluated.

Materials and Methods

This review is written in accordance to the PRISMA guidelines
(30, 31).

Literature search strategy

A literature search of the EMBASE, Scopus, and PubMed data-
bases was completed on January 31, 2018, without a specified
time frame for published articles. The search strategy utilized three
keywords: "breast cancer," "single nucleotide polymorphism,"
"risk prediction," and their synonyms. The exact search terms
used are shown in Supplementary Table S1 of the Online Sup-
plementary Material.

Study selection

Only studies published in English were considered. Studies
were included if they fulfilled the following criteria: (i) empir-
ical studies assessing risk prediction models for breast cancer in
women, which reported outcomes using AUC or its equivalent—
c-statistic and/or NRI; (ii) compared between SNP-enhanced
risk prediction models and traditional risk prediction models.
Studies excluded were genome-wide association studies,
reviews, narratives, prognostic or diagnostic studies, model
development studies, nonrisk prediction studies and studies
that included only BRCA mutation carriers. Full texts of relevant
studies were independently screened by three reviewers (Shi
Xun Lee, Xin Yi Wong, and Si Ming Fung) for inclusion. Any
disagreement was resolved, and consensus was reached among
the reviewers.
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Discriminatory accuracy and improvement in predictive ability
of model

The primary outcomes in this review are AUC and NRI. The
ROC curve is a plot of true positive rate against false positive rate.
AUC is interpreted as the probability of assigning a higher pre-
dicted risk to a randomly selected individual with the outcome of
interest than another randomly selected individual without the
outcome (32) and provides a measure of discriminatory accuracy
of the risk prediction model. A guideline on interpreting AUC
values by Swets (33) has been widely used. It classifies the
discriminatory accuracy of models into the following categories:
noninformative (AUC = 0.5), low accuracy (0.5 < AUC < 0.7),
moderate accuracy (0.7 <AUC< 0.9), high accuracy (0.9 <AUC <
1.0) and perfect accuracy (AUC = 1.0). However, the increase in
AUC for a new model is often of a very small magnitude (34) and
has been criticized as an insensitive measure of model improve-
ment (35-37). Hence, Pencina and colleagues (34) proposed a
novel index, NRI, for evaluating the improvement in predictive
ability of a new model over an old model by analyzing the
reclassification of subjects. NRI is defined in the following equa-
tion,

NRI = P(uplevent) — P(down|event) + P(down|non-event)
— P(up|non-event)

where P(x) represents predicted probabilities and upward move-
ment (up) as a change into higher risk category based on the new
model and downward movement (down) as a change in the
opposite direction. Positive NRI values indicate an overall correct
reclassification in the new model as cases were moved upwards to
higher risk thresholds and controls moved downwards to lower
risk thresholds (34).

NRI has been previously computed and analyzed in studies that
predicted risk of cardiovascular disease (38, 39), atrial fibrillation
(40), diabetes mellitus (41, 42), end-stage liver disease (43) and
end-stage renal disease (44). In the study by Paynter and collea-
gues (39), addition of a genotype to a prediction model based on
traditional risk factors, high-sensitivity C-reactive protein and
family history of premature myocardial infarction had no effect
on c-index, a generalization of AUC (0.807 to 0.809) nor showed
improvement in net reclassification (NRI —0.2%, P = 0.59). Yet,
in the study by Lubitz and colleagues (40), a significant improve-
ment in c-statistic contributed by premature familial atrial fibril-
lation [0.842 (95% confidence interval (CI), 0.826-0.858) to
0.846 (95% CI, 0.831-0.862), P = 0.004] did not correspond to a
significant NRI [0.011 (95% CI, —0.021-0.042), P = 0.51].

Data extraction

The following data were extracted from the studies: publication
year, number of case and control participants, age and ethnicity of
participants, breast cancer subtype or hormone receptor status of
case participants, country of study, study design, risk factors
considered in the models, number of SNPs and the loci of SNPs
included, method of incorporating SNPs in SNP-enhanced mod-
els, measure for evaluating discriminatory accuracy, and improve-
ment in predictive ability.

Standard of reporting and quality assessment

Studies were evaluated against the 25-item checklist provided
by the "Strengthening the Reporting of Genetic Rlsk Prediction
Studies" (GRIPS) statement (Supplementary Table S2A, Online
Supplementary Material; ref. 45). The GRIPS statement suggested

Cancer Research.


https://bloodcancerdiscov.aacrjournals.org

Fung et al.

a standard reporting guideline for genetic risk prediction studies,
but it does not serve as a quality assessment for studies.

We used the Newcastle-Ottawa Quality Assessment Scale
(NOS; Supplementary Table S3A, Online Supplementary Mate-
rial; ref. 46) to assess quality. NOS was identified by Cochrane
(47) as a tool to assess methodological quality or risk of bias in
non-randomized studies. It was based on three categories: selec-
tion of cases and controls, comparability of cases and controls
and ascertainment of the exposure of interest (46). NOS scores
range from 0 to 9. To the best of our knowledge, there are no
established cut-offs for low, moderate and high quality. Hence,
we have relied on previous literature (48) to define low quality
as a score <5, moderate quality as a score between 6 and 7 and
high quality as a score between 8 and 9.

Statistical analyses

We extracted the number of case and control participants, the
improvement in AUC (AUC of SNP-enhanced model minus AUC
of baseline risk model without SNPs), overall AUC of SNP-
enhanced model and the corresponding 95% confidence interval
(CI) for our meta-analyses. These were conducted to pool studies
by similar baseline risk models. We grouped the baseline risk
prediction models into six groups: (i) BCRAT (5-6 risk factors of
BCRAT), (ii) partial BCRAT (2-4 risk factors of BCRAT), (iii)
partial BCRAT with additional risk factors, (iv) BCSC, (v) IBIS and
(vi) other models. Forest plots were simultaneously obtained to
visualize the trends, within each baseline model group.

A preformatted datasheet developed by Neyeloff and collea-
gues (49) was used to perform the meta-analyses and forest plots.
The method suggested by Hanley and McNeil (32, 50) was used to
calculate the standard error for the AUC of the studies in the
datasheet. Heterogeneity was assessed using I%-statistic to assess
the extent of variation between study population estimates. If
significant heterogeneity was present (I>-statistic > 50%), the
random-effects model will be applied (51, 52).

Results

Figure 1 presents the literature search process. A total of 259
unique studies were identified from the databases. Reviewing of
titles and abstracts yielded 84 potentially eligible articles of which
20 were included after a full-text review. Six more studies were
identified from the references of relevant studies and 26 studies
were included in the quality assessment and systematic review.
One study did not evaluate AUC (53), so the remaining 25 studies
were included in the meta-analysis.

Study population characteristics

Table 1 summarizes the study population characteristics, risk
prediction model characteristics and model performance of the
26 studies which evaluated the discriminatory accuracy and/or
predictive ability of baseline risk models and SNP-enhanced
models. Supplementary Table S4 (Online Supplementary Mate-
rial) provides more detailed information about the method of
incorporating SNPs in model. The studies were published
between 2010 to 2018. All were case-control in nature and no
sample overlap was found in any study. The largest number of
studies (n = 14) came from the United States (54-67). 13 studies
evaluated risk prediction models among Caucasian or European
populations (23, 24, 54-57, 59, 61-64, 68, 69), eight in Asian
populations (53, 67, 70-75), three within mixed populations

(58, 60, 65), one among Australians (76), another among African
Americans and Hispanics (66). Sample sizes ranged from 324 to
37,033 women. Reported measures of central tendency of age
ranged from 44.2 (mean) to 64.6 (mean) years. Most studies
evaluated the risk prediction models in the general population
(24,53,55-58, 60,61, 63, 64, 66-68, 70, 71, 73-76) while others
specifically studied non-BRCA mutation carriers (54, 62, 69),
post-menopausal (23, 59, 65, 72) or pre-menopausal women
(72). Most studies included only patients with invasive breast
cancer as case participants (23, 53, 56-61, 63, 64, 66-70, 73,
74, 76), while six included invasive or in situ breast cancer patients
(24, 54, 55, 62, 71, 75) and two focused on estrogen receptor
(ER)—positive patients with breast cancer (65, 72).

Risk prediction model characteristics

The number of SNPs incorporated in the risk prediction models
ranged from 2 to 92. From the 25 studies, 38 risk prediction
models were selected for our meta-analysis (Supplementary Table
S5). Some studies evaluated more than one risk prediction model
by including different risk factors in the baseline model (23, 55,
69) or different number of SNPs in the SNP-enhanced model (56,
66, 72). Seven models used BCRAT as baseline model (55, 59, 66,
69, 75, 76) and another four used partial BCRAT (57, 63, 68, 74).
11 models used partial BCRAT with additional risk factors (23, 55,
62, 64, 67, 70-73), four used BCSC (60, 61, 65), four used IBIS
(24, 66, 69) and eight used other types of baseline models (54, 56,
58, 69). Risk factors included in the various traditional baseline
models are summarized in Supplementary Table S6 (Online
Supplementary Material). Most were designed for use in the
general population (69). IBIS was developed using data from
postmenopausal women and intended for use in high-risk popu-
lations (66, 69) while BRCAPRO was developed based on
studies among individuals of Ashkenazi Jewish and European
ancestry for pretest BRCA mutation (77). BOADICEA was devel-
oped using complex segregation analysis of breast and ovarian
cancer based on a combination of families identified through
population-based studies of breast cancer, and families with
multiple affected individuals who had been screened for BRCA1
and BRCA2 mutations (78).

A variety of methods for incorporating SNPs into the models
were observed. Among the 38 models, seven models (54, 56,
62, 63, 68) used the number of risk alleles present (0, 1, or 2) in
each SNP, to incorporate genetic information in the model. Ten
models (59, 67, 69, 76) used the Mealiffe method (59) to
incorporate the SNPs in the model. In the Mealiffe method, the
polygenic risk score (PRS) was calculated as the product of
genotype relative risk values. Risk allele frequencies and pub-
lished estimates of odds ratio per allele were based on a log-
additive model. Independence between non-genetic risk factors
and SNP risk for breast cancer was assumed. In five models (61,
64, 67, 71, 75), the PRS was calculated as the sum of the
product of the number of risk allele copies of the selected SNPs
and corresponding log odds ratio. Another three models used a
Bayesian approach to calculate the PRS (60, 65). In four models
(24, 70, 73, 74), a genetic risk score was calculated by other
ways to include genetic information in the model (Supplemen-
tary Table S4, Online Supplementary Material). Two models
(23) used a multiplicative penetrance model and one model
(56) used a multiple log-additive model for incorporating the
SNPs. Six models (55, 57, 58, 72) used other methods to
include genetic information in the model.
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Records identified through
database searching
(n=406)

Records after duplicates
removed
(n=259)

Records screened
(n=259)

Records excluded, with reasons

(n=175)

61 non-breast cancer

33 association studies

15 non-risk prediction (i.e.

pathogenicity, expression levels)

14 narratives (i.e. abstracts,

updates)

13 drug studies

17 reviews (i.e. systematic reviews,

meta-analyses, summaries)

7 prognostic studies

5 identification studies

7 model development

3 diagnostic studies

Full-text articles assessed
for eligibility
(n=84)

Additional records
identified through other
sources
(n=6)

Figure 1.

h 4

Studies included in
systematic review
(n=26)

Full-text articles excluded, with
reasons
(n=64)
25 genome-wide association studies
13 no comparison with non-genetic
factors (SNPs vs. model or SNPs only,
not SNP-enhanced model vs. model)
9 reviews or narratives
4 model development studies
2 non-original studies
4 did not measure outcome of
interest
5 prognostic studies
1 diagnostic study
1 study included only BRCA
mutation carriers

1 study did not use AUC

Studies included in meta-
analysis
(n=25)

Flowchart of selection process to include studies in systematic review and meta-analysis. The flowchart depicts the flow of information through the
different phases of the systematic review and meta-analysis. It maps out the number of records identified, included and excluded, and the reasons for

exclusions.

Standards of reporting and quality assessment

Details on the evaluation of studies against the GRIPS checklist
can be found in Supplementary Table S2B (Online Supplemen-
tary Material). Many studies did not carry out internal validation
or cross-validation (23, 24, 53, 55, 58, 61, 62, 64, 66-69, 72, 73,
76; Item 10). However, some used risk factors from established
risk models (e.g., BCRAT) and SNPs identified from previously
published GWAS and hence, the study itself might be considered a
validation. Some studies did not carry out additional analyses or
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had stated the results without discussion (23, 53, 54, 57-60, 62,
63,66,67,69,73,74,76; Item 20). Still, the main results were not
significantly affected, as these analyses were not considered in the
primary outcome. Some studies did not state the numbers or
reasons for non-participation (23, 53-56, 62, 64-67, 69-74, 76;
Item 14). Most studies did not report the measures of association
between risk factors and outcome except that for SNPs (23, 55, 56,
58,61, 65-67,73-76; Item 16). In general, majority of the studies
sufficiently reported their objectives, methods, results and
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presented appropriate discussion and conclusion. As for the
study quality, the average NOS score obtained by the studies
was 6.1 (range: 2-8), out of a maximum of 9. Out of 26 studies,
nine were of low quality, 12 were of moderate quality and 5
of high quality (Supplementary Table S3B). Only two studies
reported that the non-response rates were the same for both
cases and controls.

Discriminatory accuracy and improvement in predictive ability
of model

Two models reported the AUC-equivalent c-statistic values
(70, 73) while the rest provided AUC values. Using the AUC
classification provided by Swets (33), four SNP-enhanced mod-
els (65, 69, 72) had moderate accuracy (0.7 < AUC < 0.9) and
the other 34 SNP-enhanced models (23, 24, 54-64, 66-68, 70,
71, 73-76) showed low accuracy (0.5 < AUC < 0.7). Nonethe-
less, all studies showed an improvement in AUC/c-statistic
from baseline risk models to SNP-enhanced models, and the
improvement ranged from 0.011 to 0.15. Statistically signifi-
cant improvement (P < 0.05) in either AUC or NRI was
observed in 15 models (see asterisks in Table 1, last two
columns).

There were 13 models (53, 56, 59, 61, 66, 69, 76) that reported
the NRI of the effect of including genetic information in the SNP-
enhanced models (Table 2). The reported NRI values for all the
overall populations were positive, which indicates an improve-
ment in classification when genetic information was included.
However, one study found that the addition of SNPs to the
baseline model did not improve classification among a subgroup
of women aged 50 to 59 years (76).

Table 2. Reported NRI values from included studies

Performance of SNPs in Breast Cancer Risk Prediction Models

Meta-analysis of AUC

We found no observable trend between improvement in AUC
of the SNP-enhanced risk prediction model and number of SNPs
in the model. In the test for trend in AUC improvement across
ordered groups according to panel size (2 to 9 SNPs: small; 10 to
44 SNPs: medium and 71 to 92 SNPs: large), we found no
significant association (P = 0.244). We also estimated the Pear-
son's correlation coefficient between AUC improvement and
number of SNPs, which is —0.0305 (P = 0.856). Hence, we
conclude that there is no linear correlation between AUC
improvement and number of SNPs.

In Fig. 2, the pooled estimate of AUC improvement is 0.044
(95% CI, 0.038-0.049) for all 38 models, while the pooled
estimates of AUC improvement by baseline models ranged from
0.033 (95% CI, 0.025-0.041; Fig. 3A) for BCRAT to 0.053 (95%
CI: 0.018 to 0.087, Fig. 3B) for partial BCRAT. The overall AUC of
the SNP-enhanced models generally fall short of the cut-off of 0.7
for moderate accuracy (Supplementary Fig. S7). Pooled estimates
of overall AUC was highest at 0.671 (95% CI, 0.649-0.694) for
BCSC models, followed by 0.653 (95% CI, 0.632-0.674) when
partial BCRAT and additional risk factors model was used as the
baseline, 0.643 (95% CI, 0.602-0.685) for partial BCRAT, 0.627
(95% CI, 0.608-0.645) for other models, 0.622 (95% CI, 0.591-
0.654) for BCRAT model and finally 0.612 (95% CI, 0.584-
0.640) for IBIS model (Supplementary Fig. S8).

Prediction of risk by breast cancer subtype

Itappears that the addition of genetic information offers greater
benefit when the risk models were used to predict ER-positive
diseases. Among studies that used partial BCRAT and additional

No. of risk No. of NRI Value Classification Author,
Model factors SNPs (95% CI)? categories year
BCRAT (5-6 risk factors of BCRAT) 6 7 Overall: 0.085 <1.5%, Mealiffe, 2010
5 7 Overall: 0.028 1.5%-2.0%, Dite, 2013
35-39 years: 0.021 >2.0%
40-49 years: 0.074
50-59 years: —0.029
5 77 0.066 (0.019-0.110) Dite, 2016
6 75 0.033 (0.025-0.089) <1.5%, Allman, 2015
6 71 0.082 (0.003-0.162) 1.5%-<2.0%,
>2.0%
Partial BCRAT (2-4 risk factors of BCRAT) 2+4 51 0.062 <1.0%, Lee, 2014
1.0%-<1.5%,
1.5%-<2.0%,
2.0%-<2.5%
>2.5%
BOADICEA 8 77 0.040 (0.007-0.073) <1.5%, Dite, 2016
BRCAPRO 8 77 0.063 (0.030-0.094) 1.5%-2.0%,
IBIS 12 77 0.052 (0.015-0.088) >2.0%
6 75 0.060 (0.005-0.113) <1.5%, Allman, 2015
6 71 0.181 (0.085-0.273) 1.5%-<2.0%,
>2.0%
BCSC 5 76 Case: 0.110 (0.070-0.150), <3%, Vachon, 2015
Control 0.020 (—0.010-0.050) >3%
Other models 10 18 0.083 <1%, Husing, 2012

1%-<1.66%,
1.66%-<3.5%
>3.5%

Abbreviations: BCRAT, Breast Cancer Risk Assessment Tool (6); BCSC, Breast Cancer Surveillance Consortium (11, 12); BOADICEA, Breast and Ovarian Analysis
of Disease Incidence and Carrier Estimation Algorithm (9, 10); BRCAPRO (8); Cl, confidence interval; IBIS, International Breast Intervention Study (7); NRI, net

reclassification improvement.
®Positive NRI values indicate an overall correct reclassification.
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Number of SNPs  Improvement in AUC (85% CI]
Guo, 2017 (post-menopausal) _————— 2 0071 (0.053-0.089)
Guo, 2017 (pre-menopausal) 2 0077 (0.052-0.102)
Kaklamani, 2011 (Epi)
i, 2011 (Epi) a 0.150 (0.122-0.178)
Dai, 2012 (isk score)
« ) —_— s 0011 (0.006-0.016)
Hising, 2012 (7 SNPs)
—.— 7 0027 (0.024-0.030)
Sueta, 2012
— 7 0028 (0.022-0.034)
Dite, 2013
—_— 7 0030 (0.019-0.041)
Mealiffe, 2010 —_— 7 0.037 (0.030-0.044)
Zheng, 2010 —.— 8 0.012 (0.009-0.015)
Higginbotham, 2012 (BCRAT +
oot —_— 5 0027 (0.020-0.034)
Higginbotham, 2012 (BCRAT) — s 0.028(0.021-0035)
Hising, 2012 (9'5NPs) —a— s 0031 (0.028-0.034)
Xu,2013 —_—— 9 0.052 (0.038-0.066)
‘Wacholder, 2010 —a 10 0038 (0.034-0.042)
wu, 2015 S
R m— 10 0.041 (0.027-0.055)
Bumside, 2016 _—— 10 0.054 (0.038-0.070)
Hsieh, 2017
B EE] 0031 (0.020-0.042)
Darabi, 2012 (Full model) —_— 18 0.048 (0.038-0.058)
van Veen, 2018 — 138 0030 (0.026-0.034)
Hising, 2012 (18 SNPs) —a 18 0.041 (0.038-0.044)
Darabi, 2012 (Swe-Gail model) —_— 18 0.067 (0.058-0.076)
Jupe, 2014 —_— 2 0110 (0.101-0.119)
Hising, 2012 (32 SNPs) — 2 0040 (0.037-0.043)
Wen, 2016 —_— a 0.039 (0.026-0.051)
Allman, 2015 (African American, .039 )
BCRAT) — n 0030 (0.026-0.034)
‘Allman, 2015 (African A .
priald (African American, —e n 0.040 (0.035-0.045)
Allman, 2015 (Hispanic, BCRAT) B 7 0.060 (0.053-0.067)
Allman, 2015 (Hisparic, IBI5) B — 75 0.060 (0.053-0.067)
Lee, 2015 —-— 75 0020 (0.018-0.022)
Vachon, 2015 76 0.030 (0.007-0.049)
Dite, 2016 (BCRAT) —_— 7 0030 (0.021-0.039)
Dite, 2016 (BOADICEA) B — 7 0.040 (0.029-0.051)
Dite, 2016 (BRCAPRO) —_— 77 0040 (0.029-0.051)
Dite, 2016 (1Bis) —_— 7 0.060 (0.047-0.073)
shieh, 2016 B — 8 0030 (0.019-0.041)
shieh, 2017 (with estradiol) ] 0050 (0.028-0.072)
Shieh, 2017 (no estradiol) 8 0.060 (0.035-0.085)
'zz:“; . — 92 0.060 (0.058-0.062)
(F=97.8%) —— - 0.044 (0.038-0.049)
005 0 002 005 0075 01 0125 015 o0a7s

Improvement in AUC

Figure 2.

Meta-analysis of the improvement in AUC, from the addition of SNPs into breast cancer risk prediction models by increasing number of SNPs (38 models). A
forest plot for the improvement in AUC and increasing number of SNPs is shown. The 95% Cls are denoted by the black tails originating from the black square,
which is the point estimate for improvement in AUC in each model. The combined improvement estimate across all models is represented by the black diamond,
where the diamond width corresponds to the 95% Cl bounds. Heterogeneity was assessed using I>-statistic to determine the extent of variation between study
population estimates. As the [2-statistic is more than 50%, the random-effects model is applied.

risk factors, Guo and colleagues (72) had the largest AUC improve-
ment and overall AUC (Fig. 3C; Supplementary Fig. S7C). It only
involved patients with ER-positive, HER-2 negative breast cancers,
while other studies in the same group included invasive or in situ
breast cancer cases regardless of hormone receptor status (23, 55,
62, 64, 70, 71, 73). Another study by Shieh and colleagues (65),
which included only ER-positive cases, also had larger improve-
ment in AUC compared to the other studies within the group
(Fig. 3D). Husing and colleagues investigated breast cancer risk by
subtype and the predictive quality of the models were markedly
better for ER-positive cancers rather than ER-negative (56).
However, it should be noted that majority of breast cancer cases
used in the discovery and validation of SNPs from GWAS thus far
have been ER-positive. Most of the known breast cancer loci show
differences in relative risk by subtype. In particular, 6 of the 14 loci
associated with ER-negative disease at genome-wide significance
show no evidence of association with ER-positive disease (79). A
recent meta-analysis (80) identified four new susceptibility loci
for ER-negative disease, and that brings the total count to only 23.
Studies included in our review did not focus on ER-negative
specific SNPs or ER-negative cancers. This is likely why the risk
prediction models appear to perform better in ER-positive cancers.

Discussion

The findings of this study suggest that the addition of genetic
information into traditional risk prediction models for breast
cancer improved model performance, although only slightly.

Four out of 38 models showed moderate discriminatory accuracy
(0.7 < AUC < 0.9) (65, 69, 72). Of these, three were focused on
ER-positive breast cancers and included endogenous hormones
as risk factors in the baseline models (65, 72). All other studies
displayed low discriminatory accuracy. All studies showed an
overall improvement in discriminatory accuracy or reclassifica-
tion when genetic information was added to the baseline risk
prediction model, apart from a subgroup analysis among women
aged 50 to 59 years (76). The greatest gain in AUC was in the study
by Kaklamani and colleagues (58) using race, age and body mass
index in the baseline model. They genotyped breast cancer cases
and controls for four fat mass and obesity associated gene
SNPs: 157206790, 18047395, 159939609, and rs1477196 and
found that these genotypes provided powerful classifiers to pre-
dict breast cancer risk. A model containing epistatic interactions
further improved the prediction accuracy to an AUC of 0.68
(improvement of 0.15, from 0.53).

The greatest gain in NRI was in the study by Allman and col-
leagues (66) using the IBIS as baseline model (Table 2, Fig. 3E).
They studied the extent to which clinical breast cancer risk pre-
diction models are improved by including information on sus-
ceptibility SNPs in African American or Hispanic women. The
addition of 71 SNPs resulted in an NRI of 0.181 in Hispanic
women. The IBIS model includes an extensive set of risk factors
and is one of the most sensitive models for detecting risk for breast
cancer (81, 82). For instance, it includes extended family history,
BRCA1/2 genetic status with non-genetic risk factors such as age,
age at menarche, age at first live birth, age at menopause, parity,
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Figure 3.

Meta-analysis of the improvement in
AUC, from the addition of SNPs into
breast cancer risk prediction models by
increasing number of SNPs and baseline
model group. A-F, BCRAT (5-6 risk
factors of BCRAT; A); partial BCRAT
(2-4 risk factors of BCRAT; B); partial
BCRAT + additional risk factors (C),
BCSC (D), IBIS (E), and other models
(F). A forest plot for the improvement in
AUC and increasing number of SNPs by
baseline model group is shown. The 95%
Cls are denoted by the black tails
originating from the black square, which
is the point estimate for improvement in
AUC in each model. The combined
improvement estimate within each
baseline model group is represented by
the black diamond, where the diamond
width corresponds to the 95% CI
bounds. Heterogeneity was assessed
using [-statistic to determine the extent
of variation between study population
estimates. As the |?-statistic is more
than 50% for all model groups, the
random-effects model is applied.

history of hormone replacement therapy use, history of atypical
hyperplasia, history of lobular carcinoma in situ, height, and body
mass index (7). Clinicians typically use models like BCRAT for
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There was no observable trend between improvement in AUC
of the SNP-enhanced risk prediction model and number of SNPs
included in the model. Other factors, such as age, ethnicity, loci of
SNPs, and method of incorporating SNPs may also affect risk
prediction. While we have stratified the studies by baseline risk
models, variation in abovementioned study characteristics still
exist within each group and could have confounded the findings
and limited the ability to conclude on the association between
number of SNPs and improvement in AUC. Therefore, we looked
at studies that compared incremental number of SNPs internally.
Hiising and colleagues (56) showed that adding SNPs using allele
count method resulted in a small but steady increase in discrim-
inatory accuracy, when the number of genetic variants increase
(7,9, and 32 SNPs; Table 1). However, when 18 SNPs were added
using a multiple log-additive model, the AUC was slightly higher
than that of 32 SNPs added using allele count.

In another study that included only SNPs in the risk prediction
model (84), the AUC increased from 0.591 to 0.622 (10 versus 22
SNPs) and from 0.622 to 0.684 (22 versus 77 SNPS). This suggests
that the more SNPs the prediction model includes, the more
discriminative it becomes. However, this was not observed in the
model with 153 SNPs, where AUC was 0.650, lower than that
achieved by model with 77 SNPs (84). This raises the question
of whether the upper limit of SNPs predictive power has been
reached. Also, GWAS have been primarily designed to capture
common variation, and are thus underpowered to detect the
effects of rare variants (85). We may need to relook at the strategies
for genetic variants identification, such as employing whole
genome sequencing as the technology advances (86).

Addition of genetic information in SNP-enhanced models may
not offer benefit when the risk prediction models were used
among older women. Jupe and colleagues (57) reported that the
improvement in AUC between SNP-enhanced model and base-
line model among women aged 50 to 54 years did not reach a
statistically significant increase. Another study reported that the
addition of genetic information did not improve classification
among 50 to 59 years, as the NRI for this subgroup was negative
(76). Under the partial BCRAT baseline model group, both the
improvement and overall AUC of the study by Jupe and colleagues
were much higher than the others (Fig. 3B; Supplementary Fig.
$7B, Online Supplementary Material). This could be due to lower
age (35-39 years) as compared with the other three studies which
involved older women (63, 68, 74). While this may suggest that
the addition of genetic information results in better prediction
among younger women, it is worth noting that these women came
from Marin County, California, a region with very high incidence
of breast cancer (57). Also, in a study that investigated the value of
using 77 SNPs as a PRS for risk stratification, Mavaddat and
colleagues (87) found that the degree of attenuation of the family
history odds ratio when adjusted by PRS was lower among
younger women (below 40 years), due to the higher familial
relative risk in this subgroup. This suggests that rarer genetic
variants may be more important at young ages.

Currently, there is no clear evidence to guide the inclusion of
SNP-SNP interactions in the SNP-enhanced model. Hiising and
colleagues (56) performed individual pair-wise SNP-interaction
tests and found no evidence to include genetic interaction terms
into the risk models. A large-scale study assessed all 2.5 billion
possible two-way interactions between 70,917 breast cancer asso-
ciated-SNPs and found no significant associations with breast
cancer risk (88). Still, the authors cautioned that despite the large

sample size, the study might have been underpowered to detect
very small interaction effects. Kaklamani and colleagues (58)
reported a larger than expected improvement and overall AUC
(Fig. 3F; Supplementary Fig. S7F). This study found that the
inclusion of epistatic interactions that were significantly associ-
ated with breast cancer risk improved the model fit and reduced
out-of-sample prediction error.

Few studies reported NRI as it was introduced recently in 2008
(34). NRI should also be used in conjunction with complemen-
tary statistical measures, such as AUC. An increase in AUC was
observed for all the SNP-enhanced models and positive NRI
values observed for all the overall models, which indicates overall
correct reclassification by the addition of genetic information in
the SNP-enhanced models. If we consider the incorporation of
SNP information as a refinement to existing risk models, the
benefit may be the greatest among those who are at borderline
high or borderline low risk for breast cancer. This was reflected in
the study by Mealiffe and colleagues (59), where the NRI value
was significantly larger only when women with intermediate risk
was included compared to when women with all risk categories
were included. Two other studies in our review have shown that
majority of the risk reclassification occurred in the group of
women with intermediate risk. Shieh and colleagues (60) found
that both cases and controls within the BCSC 5-year average- and
intermediate-risk strata (1.00% to 1.66% and 1.67% to 2.49%
respectively) were reclassified into the low-, high- and very high-
risk strata, when PRS from 83 SNPs were added to the original
BCSC model. Notably, the BCSCv2-PRS model classified nearly
three times as many cases into the high-risk (>3%) strata com-
pared with the BCSCv2 model. This points towards the possibility
of administering the SNPs test in women with average/interme-
diate risk.

Another study by Darabi and colleagues (23) found that by
adding mammographic density, body mass index and genetic
information from 18 SNPs, 58% of those in the intermediate risk
category under the original Swe-Gail model were reclassified into
low or high risk. This is higher than that in the low- and high-risk
groups (24% and 41%).

Astudy that investigated the cost-effectiveness of a 7SNP test for
breast cancer risk (89) found it most cost-effective when given to
patients with an intermediate lifetime risk of breast cancer. When
they limited the test to patients who are most likely to have their
risk category changed, they found that testing those with an
intermediate Gail risk near 20% was relatively efficient. Two issues
arise when we consider the role of SNP testing. The first issue is
whether the screening should be a two-step process where a
questionnaire is first used to identify individuals at intermediate
risk and followed by administration of SNP testing for these
women only. The second issue is whether this marginal gain in
discriminatory accuracy offers value for money, that is, whether
SNP testing is cost-effective. There are several advantages for the
two-step process. Women at higher risk of breast cancer may be
more likely to take up SNP testing as it can guide prevention and
surveillance strategies (90, 91). SNP testing a smaller group of
women may be more cost-effective than testing the whole pop-
ulation. Furthermore, fewer participants would be subjected to
the potential loss of privacy of their genetic information. Still, we
acknowledge that the evidence for targeted SNPs testing is in the
early stage and more research is warranted.

Comprehensive risk assessment in a clinic setting is limited by
time constraints, leading to incomplete and variable risk
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evaluation (92). While a genetic test may be more efficient, it does
not incorporate well-established risk factors such as hormonal
and reproductive factors, family history of breast and/or ovarian
cancer and mammographic density and cannot accurately predict
awoman's breast cancer risk. Studies in our review shown that the
AUC for SNPs-only models are typically in the 0.5 to 0.6 range,
indicating low accuracy (56, 59, 60, 73, 74). An AUC of 0.5
indicates a random classification model not capable of predicting
cancer.

A more opportune moment to assess breast cancer risk and
inform women about risk reduction measures could be during the
first mammography screening appointment, as highlighted by
Evans and colleagues (22). The Predicting Risk Of Cancer At
Screening study (93) has shown that it is feasible to collect
questionnaire data from women when they attend the screening
episode. In future, this may also allow the introduction of risk-
stratified screening.

In the pooled estimates grouped by baseline models, overall
AUC was the highest for BCSC followed by partial BCRAT and
additional risk factors, partial BCRAT, other models, BCRAT and
IBIS model (Supplementary Fig. S8). Researchers may keep this in
mind when selecting the baseline model for their studies. BCSC
was developed and validated in a multiracial and multiethnic
population of over 1 million women undergoing mammography
in the United States (11).

Some limitations include those associated with study design.
The studies in this review were all case-control in nature, of which
nine were nested case-control studies (24, 53, 55, 56, 59-61, 64,
65). The calibration of absolute event rates could not be evaluated
in such a study design (59). In many studies (23, 53, 56, 58—
61,64, 65,70,71,73,74), the cases and controls were matched by
age, and hence the discriminatory effect of age on breast cancer
risk prediction could not be evaluated. The discrimination of the
risk prediction score is likely to be higher in large, unmatched
studies (65). There is a need for evaluation of model calibration in
population-based cohorts so that the clinical validity of the
models can be assessed further.

Another common limitation is that the SNP-enhanced risk
prediction model in the studies might not be generalizable to
other populations, especially those of different ethnicities. Dif-
ferent populations have different SNP profiles. Thus, for higher
accuracy, the associations between SNPs and breast cancer should
be specifically validated in ethnicities used in the study (94). For
instance, in one study, 7 out of 8 breast cancer-associated SNPs
were initially identified in previously published studies con-
ducted in European women but were applied in the risk predic-
tion model among Chinese women (70). The SNP-enhanced
model showed low discriminatory accuracy (AUC = 0.630) and
lower improvement in AUC (0.012) compared with the other
included studies (70). Most studies also had missing information
on some risk factors, such as history of atypical hypoplasia for
BCRAT (57, 59, 63, 68, 69, 74, 76) and IBIS (69) and number of
breast biopsies for BCRAT (57, 69, 76) and BCSC (65).

References
1. Ginsburg O, Bray F, Coleman MP, Vanderpuye V, Eniu A, Kotha SR, et al.
The global burden of women's cancers: a grand challenge in global health.
Lancet 2017;389:847-60.
2. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C,
Barber RM, Barregard L, Bhutta ZA, et al. Global, regional, and national
cancer incidence, mortality, years of life lost, years lived with disability, and

DOWKIbAREEHEI RS //bl oodcancerdiscov. aacrjournals.org by guest on September S5/ 8056) CaHOHTNB1 8 A R i R BE AN or 519

Performance of SNPs in Breast Cancer Risk Prediction Models

In this review, we obtained information from published liter-
ature which did not always provide access to primary data. Given
that all included studies showed an improvement in overall
discriminatory accuracy and reclassification, publication bias is
likely.

Conclusion

Genetic information improved the discrimination accuracy
when added to traditional risk prediction models for breast
cancer, with overall AUC being the highest in SNP-enhanced
BCSC model. SNP-enhanced models have also demonstrated an
improvement in overall reclassification for risk groups. We did not
observe any association (P = 0.244 for non-parametric test for
trend across ordered panel sizes) nor linear correlation (P = 0.856
for Pearson correlation coefficient) between AUC improvement
and number of SNPs added (range: 2-92). In addition, we
observed significant heterogeneity in the choice of baseline mod-
el, method of incorporating SNP information and population
studied. To further advance knowledge in this field, guidance on
appropriate study design and/or standardization of methodology
may be required. To overcome the limitation of GWAS in iden-
tifying rare variants, newer technologies such as whole genome
sequencing may be employed. Our findings suggest that the
addition of genetic information in SNP-enhanced models may
offer greater benefit when the models are used for risk prediction
among subgroups, particularly women with intermediate risk.
This implies that perhaps screening could be a two-step process
where a questionnaire is first used to identify individuals at
intermediate risk and followed by administration of SNP testing
for these women only. Further research on targeted SNPs testing is
warranted.
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