Approaching a Scientific Consensus on the Association between Allergies and Glioma Risk: A Report from the Glioma International Case-Control Study

E. Susan Amirian1, Renke Zhou1, Margaret R. Wrench2, Sara H. Olson3, Michael E. Scheurer1, Dora Il’yasova4,5, Daniel Lachance6, Georgina N. Armstrong1, Lucie S. McCoy2, Ching C. Lau1, Elizabeth B. Claus7, Jill S. Barnholtz-Sloan8, Joellen Schildkraut9, Francis Ali-Osman9, Siegal Sadetzki10,11, Christoffer Johansen12,13, Richard S. Houlston14, Robert B. Jenkins15, Jonine L. Bernstein3, Ryan T. Merrell16, Faith G. Davis17, Rose Lai18,19,20, Sanjay Shete21, Christopher I. Amos22,23, Beatrice S. Melin24, and Melissa L. Bondy1

Abstract

Background: Several previous studies have found inverse associations between glioma susceptibility and a history of allergies or other atopic conditions. Some evidence indicates that respiratory allergies are likely to be particularly relevant with regard to glioma risk. Using data from the Glioma International Case-Control Study (GICC), we examined the effects of respiratory allergies and other atopic conditions on glioma risk.

Methods: The GICC contains detailed information on history of atopic conditions for 4,533 cases and 4,171 controls, recruited from 14 study sites across five countries. Using two-stage random-effects restricted maximum likelihood modeling to calculate meta-analysis ORs, we examined the associations between glioma and allergy status, respiratory allergy status, asthma, and eczema.

Results: Having a history of respiratory allergies was associated with an approximately 30% lower glioma risk, compared with not having respiratory allergies (mOR, 0.72; 95% confidence interval, 0.58–0.90). This association was similar when restricting to high-grade glioma cases. Asthma and eczema were also significantly protective against glioma.

Conclusion: A substantial amount of data on the inverse association between atopic conditions and glioma has accumulated, and findings from the GICC study further strengthen the existing evidence that the relationship between atopy and glioma is unlikely to be coincidental.

Impact: As the literature approaches a consensus on the impact of allergies in glioma risk, future research can begin to shift focus to what the underlying biologic mechanism behind this association may be, which could, in turn, yield new opportunities for immunotherapy or cancer prevention.

Cancer Epidemiol Biomarkers Prev; 25(2): 282–90. ©2016 AACR.
Introduction

Over the past several decades, a history of allergies and atopic conditions has been consistently reported to be associated with decreased glioma risk (1–7). With some exceptions (8–10), the majority of studies have found that allergic conditions may reduce glioma risk by as much as 20% to 40% (1–4, 7). These associations have been examined using single- (11), multisite (12–14), nested case–control studies (15, 16), prospective cohort studies (3), and meta-analyses (1, 2, 7). In addition, the observed inverse association between allergies and glioma has remained consistent across studies with different exposure assessment strategies, such as self-reported allergy status (3), self-reported physician-diagnosed allergies (12, 13, 17–19), number of allergy types (12, 17), and allergy-related biomarkers, such as IgE (overall; refs. 4, 11, 16, 20), prediagnostic (16, 21), and/or allergen-specific (11, 15, 16), soluble CD23 levels (22), and polymorphisms in allergy-related genes (23–26). As the literature approaches a consensus on the relationship between allergies and glioma risk, our large consortium, the Glioma International Case-Control Study (GICC), provides an unprecedented opportunity to not only confirm the previously reported associations between atopy and glioma in the largest available study population, but also to hone in on the specific role of respiratory allergies.

In studies that have examined specific allergy types, the observed associations between glioma and respiratory allergies (hay fever/allergic rhinitis or asthma) tend to be among the more robust (12, 15, 16, 20, 27–29). Although reactions to food allergens are often limited to the gut (or systemic in the worst cases), inhaled allergens activate mucosal mast cells in the nasal passage and respiratory tract, and usually induce a localized response (30). The nasal passage may be of particular interest in studies of glioma, as some intranasally administered peptides or chemicals can cross the blood–brain barrier (BBB; refs. 20, 31). Furthermore, particles of a certain size, charge, and configuration may enter the brain directly from the nasal passage through the trigeminal nerve sheath, bypassing the BBB (32, 33). Thus, it has been hypothesized that intranasal exposures are more likely to directly affect intracranial immune responses than food or contact allergies (16, 20).

In this international multisite consortium study, we assessed the role of allergies (particularly respiratory allergies), asthma, and eczema on glioma risk. We also evaluated whether regular oral antihistamine use or respiratory allergy treatment type was associated with glioma risk. Our study represents the largest study of these associations to date (n = 4,533 cases and 4,171 controls), with the exception of a few meta-analyses of the previous literature (1, 7).

Materials and Methods

Study population

Detailed information on the GICC study can be found elsewhere (34). Briefly, the GICC is an international consortium with 14 recruitment sites across five countries: Brigham and Women’s Hospital (Boston, MA), Case Western Reserve University (Cleveland, OH), Columbia University (New York, NY), Danish Cancer Society Research Centre (Copenhagen, Denmark), The Gertner Institute (Tel Hashomer, Israel), Duke University (Durham, NC), University of Texas MD Anderson Cancer Center (Houston, TX), Memorial Sloan Kettering Cancer Center (New York, NY), Mayo Clinic (Rochester, MN), NorthShore HealthSystem (IL), Umeå University (Umeå, Sweden), University of California (San Francisco, CA), University of Southern California (San Francisco, CA), and The Institute of Cancer Research (London, UK). Cases were defined as individuals within 18 to 80 years of age (at diagnosis) who had a histologically confirmed, supratentorial, intracranial glioma [fibrillary astrocytoma (9,420/3), protoplasmic astrocytoma (9,410/3), gemistocytic astrocytoma (9,411/3), oligodendroglioma (9450/3), oligoastrocytoma (9,382/3), anaplastic astrocytoma (9,401/3), anaplastic oligodendroglioma (9,451/3), anaplastic oligoastrocytoma (9,382/3), gliosarcoma (9,442/3), and glioblastoma (9,440/3)]. They were recruited within a year of diagnosis and consented at their clinic visits.

Controls were eligible for the study if they were between 18- and 80 years old. Because it was not feasible for all sites to recruit controls using identical methods, seven sites recruited visitors accompanying cancer patients as controls, four sites recruited clinic-based controls, and three sites used population-based controls.

All sites received Institutional Review Board or ethical board approval to conduct the study, and informed consent was obtained from participants.

Data collection

All sites adhered to a common study protocol and administered the same questionnaire. Study coordinators were centrally trained to help standardize data collection procedures. Data were stored in a centralized database. More information on data collection and reliability is provided elsewhere (34).

The GICC risk factor questionnaire included information on demographics, past medical/medication history, and occupational exposure history. Questionnaires were administered in-person and/or by phone, or through mailed self-administered forms. Regarding allergies and atopy specifically, the participants were asked about their experiences ≥1 year before brain tumor diagnosis (or enrollment). Allergy status was assessed by asking whether the person experienced certain symptoms (skin, respiratory, watery eyes, digestive problems, anaphylaxis, or other) and whether he/she demonstrated allergic reactions to any of a list of potential allergens (dust/mold, plants/pollens, foods, animals, medications, soaps/cosmetics, or other). For each allergen, the participant was asked the age at first allergic episode (age <1, 1–12, 12–20, or >20 years) and how they treated that particular allergy (medication, desensitization shots, epinephrine shots, avoidance, etc.). Participants were also asked about asthma and eczema. Similar to allergies, they reported their age at first diagnosis and treatment method for each.

Detailed information on antihistamines and other allergy treatments was also collected. Participants were asked whether they took antihistamines or decongestants regularly (once a month or more) for at least 6 months of their lives. We provided a list of the most commonly used allergy medications and also collected information on age at first allergy medication use.

Statistical analysis

The overall GICC analysis plan (including sensitivity analyses) and a table of population demographics by study site have previously been published (34). For the current analyses, we compared cases and controls on relevant characteristics, overall, by study site, and by tumor grade (high-grade: WHO grade 4; lower-grade: grade 2 and 3) among cases. Exposures of interest.
The association between respiratory allergies and glioma risk was explored among those with and without allergies, as some individuals may take antihistamines regularly for indications other than allergic conditions (i.e., as sleep aids or antihistemics).

Despite our large sample size, our exploratory analyses of the potential interaction between respiratory allergies and asthma were underpowered, and thus, had to be analyzed by pooling the data from all sites, rather than by meta-analysis. Although we acknowledge that pooling is not entirely appropriate given the intersite heterogeneity present in our large consortium, these pooled analyses were exploratory in nature and were used to ascertain whether there may be some indication of an interaction at play that should be examined in future studies.

We conducted sensitivity analyses, including and excluding proxy respondents and comparing the results to ensure that there were no meaningful discrepancies in ORs. Potential differences in ORs between sites by the different control types (visitor, clinic, or population based) were also examined to confirm that patterns by control type were not present in our results.

Results

The GICC includes a total of 4,533 cases and 4,171 controls recruited across 14 study sites. Table 1 presents the distributions of demographics and relevant attributes by case–control status and tumor grade. The age distribution between cases and controls was similar, but high-grade cases tended to be older than lower grade cases, as expected. Cigarette smoking distribution was similar among cases and controls, with a slightly higher preponderance of current smokers among controls.

Overall, a history of any allergy was associated with a 21% lower risk of glioma, adjusting for age and sex, though this association was of borderline statistical significance (mOR, 0.79; 95% CI, 0.61–1.02; data not shown). UCSF was the only site in which a significant positive association was observed. Stratified by tumor grade, the association between any allergies and glioma was only significant among high-grade cases (mOR, 0.75; 95% CI, 0.58–0.98; among lower grade cases, mOR, 0.84; 95% CI, 0.63–1.11). Geographic differences in the impact of allergies on glioma risk were not observed.

Figure 1 provides the site-specific and meta-OR for the association between respiratory allergies and glioma risk, overall (Fig. 1A) and by tumor grade (Fig. 1B and C). Overall, having respiratory allergies was associated with an approximately 30% lower glioma risk, compared with not having respiratory allergies (mOR, 0.72; 95% CI, 0.58–0.90). When stratifying by sex, the mOR remained remarkably similar among males (mOR, 0.69; 95% CI, 0.53–0.89), but among females, the effect was slightly attenuated (mOR, 0.79; 95% CI, 0.63–0.98; not shown).

The association between respiratory allergies and glioma risk remained similar when restricting to high-grade gliomas (mOR, 0.70; 95% CI, 0.57–0.85), whereas the magnitude of the effect was closer to the null and not statistically significant among lower-grade gliomas (mOR, 0.80; 95% CI, 0.62–1.03; Fig. 1B and C). When stratifying by age at glioma diagnosis/enrollment (<40, 40–59, and ≥60 years), the CIs for the estimates overlapped between the three age groups and no obvious trends were seen (overall or by tumor grade).

Age of diagnosis of respiratory allergies was also considered in our analyses (Supplementary Table S1). When stratifying by age at allergy diagnosis before 20 years, the mOR between respiratory allergies and glioma was still in the inverse direction (mOR, 0.76; 95% CI, 0.58–1.00) and the CIs largely overlapped with those of the mOR among allergies diagnoses at ages ≥20 years (mOR, 0.67; 95% CI, 0.54–0.83). Restricting the analyses to respiratory allergies diagnosed in early childhood (<12 years of age) yielded similar, though attenuated, results (mOR, 0.82; 95% CI, 0.64–1.06).

None of the other allergy types were significantly associated with glioma risk (Table 2), even among individuals without respiratory allergies (not shown).
The site-specific and overall associations between asthma status and glioma risk are provided in Fig. 2. Fewer of the site-specific ORs were significantly protective against glioma, compared with the results for respiratory allergies, but overall, asthma was associated with a statistically significant 23% decreased glioma risk (mOR, 0.77; 95% CI, 0.64–0.93). Results were similar stratified by tumor grade (among high-grade, mOR, 0.76; 95% CI, 0.60–0.97; among lower-grade, mOR, 0.73; 95% CI, 0.58–0.92).

Because of small numbers, we could not examine the potential joint effects of asthma and respiratory allergies using meta-regression. However, when the data were pooled, our results suggested that having both asthma and respiratory allergies together (compared with having neither) may potentially confer slightly greater protection than having only asthma or only respiratory allergies (not shown). However, as the pooled analysis does not account for intersite heterogeneity, those results may be due to statistical fluctuations in our data.

A history of eczema was significantly associated with a decreased glioma risk, adjusting for age and sex (mOR, 0.71; 95% CI, 0.56–0.89; Fig. 3). The effect of eczema was similar stratified by tumor grade (among high-grade, mOR, 0.70; 95% CI, 0.52–0.95; among lower-grade, mOR, 0.69; 95% CI, 0.53–0.90). The association between long-term antihistamine use and glioma risk was not statistically significant, adjusting for age, sex,
and respiratory allergy status (mOR, 0.87; 95% CI, 0.71–1.07). Restricting to individuals with respiratory allergies did not meaningfully change the mOR between long-term antihistamine use and glioma risk (mOR, 0.90; 95% CI, 0.74–1.09). We could not reliably evaluate this association among those without respiratory allergies due to small numbers. No differences by treatment type were observed.

Discussion
To our knowledge, our study represents the largest study to date on the role of allergic conditions in glioma risk. Using data from our international consortium, we found that respiratory allergies, asthma, and eczema were all significantly associated with reduced glioma risk. Our results are concordant with three previously published studies. However, further research is needed to confirm these findings and to explore potential mechanisms underlying the association between allergy and glioma risk.
Table 2. Associations between various allergy types and glioma risk: results from the GICC study

<table>
<thead>
<tr>
<th></th>
<th>Case n (%)</th>
<th>Control n (%)</th>
<th>Adjusted meta-analysis ORs (95% CIs)†</th>
<th>Heterogeneity test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal/insect allergies‡</td>
<td>3,783 (85.55)</td>
<td>3,407 (86.08)</td>
<td>1.00</td>
<td>59.30</td>
</tr>
<tr>
<td>No</td>
<td>639 (14.45)</td>
<td>551 (13.92)</td>
<td>0.98</td>
<td>0.0761</td>
</tr>
<tr>
<td>Yes</td>
<td>66.10</td>
<td>0.0063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food allergies§</td>
<td>4,038 (91.11)</td>
<td>3,540 (89.17)</td>
<td>1.00</td>
<td>68.90</td>
</tr>
<tr>
<td>No</td>
<td>394 (8.89)</td>
<td>430 (10.83)</td>
<td>0.78</td>
<td>0.1004</td>
</tr>
<tr>
<td>Yes</td>
<td>0.0011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medication allergies</td>
<td>3,443 (77.91)</td>
<td>3,147 (79.41)</td>
<td>1.00</td>
<td>75.50</td>
</tr>
<tr>
<td>No</td>
<td>976 (22.09)</td>
<td>816 (20.59)</td>
<td>0.98</td>
<td>0.2607</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soap/cosmetics allergies</td>
<td>4,098 (92.82)</td>
<td>3,629 (91.83)</td>
<td>1.00</td>
<td>0.79</td>
</tr>
<tr>
<td>No</td>
<td>317 (7.18)</td>
<td>323 (8.17)</td>
<td>0.79</td>
<td>0.55</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†Full two-stage random-effects restricted maximum likelihood model adjusting for glioma diagnosis/enrollment age and sex.
‡Case Western and USC excluded from meta-analysis due to cell frequencies < 5.
§Brigham and Women’s, Case Western, and USC excluded from meta-analysis due to cell frequencies < 5.

Published meta-analyses (1, 2, 7), as well as another large international multisite consortium study (12), all estimating a 20% to 40% lower risk of glioma associated with having allergic conditions. The mORs reported in our study for overall allergies and respiratory allergies fall within this range. Similarly, our effect estimates for asthma and eczema are also consistent with these and other smaller studies (14, 27, 28, 35). On the basis of the growing body of evidence in the literature, the scientific community may be approaching a consensus on the role of allergies in glioma risk (36, 37).

Although our study confirms several previous reports of the protective effect of allergies against glioma (1, 2, 5, 7), our data suggest that respiratory allergies may largely be driving the association we observed between general self-reported allergy status and glioma risk. Prior studies that have examined specific allergy types have also described similar protective effects associated with respiratory allergy, allergic rhinitis, or hay fever (1, 3, 18, 27). For example, combining effect estimates from five different studies, Chen and colleagues (1) provided a meta-analysis OR of 0.78 (95% CI, 0.70–0.87) for hay fever and glioma risk. A series of cohort studies have also suggested that hay fever/allergic rhinitis may be protective against glioma, although results from these studies did not reach statistical significance (likely due to small numbers of cases; ref. 3). In addition, a case–control study nested in the European Prospective Investigation into Cancer and Nutrition Cohort (EPIC) found an OR of 0.73 for having specific IgE against the eight most common respiratory allergens (using prediagnostic specimens), though this finding was not statistically significant (95% CI, 0.51–1.06, ref. 13). Similarly, Wiemels and colleagues (20) reported an OR of 0.73 (95% CI, 0.56–0.96) associated with a positive history of at least one self-reported respiratory allergy. Their results also implied that elevated respiratory IgE may be protective against glioma (OR, 0.80; 95% CI, 0.60–1.06). Although the latter finding did not attain statistical significance, their overall findings on respiratory allergies were more robust than those on food allergies, leading the authors to conclude that future research should focus specifically on the effects of respiratory allergies.

Like other studies (12, 15, 21), our study found that the protective effect of respiratory allergies (and any allergies) was stronger among high-grade glioma cases than it was for lower grade cases. However, we have a larger sample size of high-grade cases (n = 2,722 vs. n = 1,664 lower grade), and the mOR for respiratory allergies was borderline significant among lower-grade cases. Nevertheless, as other studies have also observed this pattern, future research should investigate why the effect of atopy may be more pronounced for high-grade gliomas.

Table 2. Associations between various allergy types and glioma risk: results from the GICC study.

<table>
<thead>
<tr>
<th>Study</th>
<th>Case n (%)</th>
<th>Control n (%)</th>
<th>Adjusted meta-analysis ORs (95% CIs)</th>
<th>Heterogeneity test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BWH</td>
<td>192</td>
<td>23</td>
<td>0.88 (0.31–2.56)</td>
<td>2.6%</td>
</tr>
<tr>
<td>Denmark</td>
<td>526</td>
<td>533</td>
<td>0.76 (0.50–1.15)</td>
<td>10.5%</td>
</tr>
<tr>
<td>Duke</td>
<td>718</td>
<td>267</td>
<td>0.49 (0.34–0.72)</td>
<td>11.6%</td>
</tr>
<tr>
<td>Israel</td>
<td>389</td>
<td>478</td>
<td>0.86 (0.62–1.24)</td>
<td>8.4%</td>
</tr>
<tr>
<td>MDACC</td>
<td>477</td>
<td>273</td>
<td>1.37 (0.87–2.15)</td>
<td>9.6%</td>
</tr>
<tr>
<td>MSKCC</td>
<td>293</td>
<td>376</td>
<td>1.12 (0.70–1.78)</td>
<td>9.3%</td>
</tr>
<tr>
<td>Mayo</td>
<td>362</td>
<td>450</td>
<td>0.80 (0.52–1.21)</td>
<td>10.5%</td>
</tr>
<tr>
<td>NorthShore</td>
<td>131</td>
<td>174</td>
<td>0.63 (0.31–1.26)</td>
<td>5.5%</td>
</tr>
<tr>
<td>Sweden</td>
<td>411</td>
<td>753</td>
<td>0.84 (0.55–1.27)</td>
<td>10.6%</td>
</tr>
<tr>
<td>UCSF</td>
<td>337</td>
<td>324</td>
<td>0.56 (0.36–0.87)</td>
<td>9.8%</td>
</tr>
<tr>
<td>UK</td>
<td>458</td>
<td>116</td>
<td>0.64 (0.34–1.19)</td>
<td>7.3%</td>
</tr>
<tr>
<td>USC</td>
<td>93</td>
<td>198</td>
<td>0.59 (0.27–1.31)</td>
<td>4.3%</td>
</tr>
</tbody>
</table>

Random-effects model
(heterogeneity: P = 0.036, τ² = 0.0374, P = 0.0907)

0.77 (0.64 – 0.93) 100%
Asthma and eczema were also found to be significantly protective against glioma risk in our study. Two major meta-analyses have estimated a 30% reduction in glioma risk for a positive history of either of these conditions (1, 2). Allergic rhinitis and asthma are both induced by inhaled allergens (30). Allergic rhinitis occurs when mucosal mast cells in the nasal epithelium are activated, whereas allergic asthma results from activation of the submucosal mast cells of the lower airways. Pathophysiologically, these two conditions both involve the respiratory tract, but asthma becomes characterized by chronic inflammation (even after the triggering allergen is no longer present). Eczema (or atopic dermatitis) is an allergic reaction in the skin, and like asthma, often involves persistent chronic inflammation. The fact that eczema demonstrates a similar inverse association with glioma as asthma and rhinitis may argue against that idea that reactions localized in the respiratory tract are more relevant to glioma etiology.

In our study, long-term antihistamine use was not significantly associated with glioma risk, adjusting for respiratory allergy status. The impact of antihistamine use is difficult to disentangle from that of allergies, as these factors are highly correlated, and few individuals without allergies use antihistamines regularly. Previously, McCarthy and colleagues (17) reported an OR of 0.76 for the association between any oral antihistamine use versus none (95% CI, 0.59–0.99), but they did not adjust for allergy status and their result could, therefore, be confounded by the effect of allergies. In our prior studies, we have observed an increased risk for glioma associated with antihistamine use, particularly among individuals with allergic conditions (38–40); however, other studies have found either no association or a protective effect (18, 41). More detailed analyses on antihistamines. Future research should investigate the effects of different generations of antihistamines and should also separately

<table>
<thead>
<tr>
<th>Study</th>
<th>Case</th>
<th>Control</th>
<th>OR</th>
<th>95% CI</th>
<th>W (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWH</td>
<td>190</td>
<td>23</td>
<td>0.35</td>
<td>(0.11–1.06)</td>
<td>3.2%</td>
</tr>
<tr>
<td>Denmark</td>
<td>522</td>
<td>529</td>
<td>0.89</td>
<td>(0.64–1.25)</td>
<td>15.7%</td>
</tr>
<tr>
<td>Duke</td>
<td>714</td>
<td>267</td>
<td>0.57</td>
<td>(0.34–0.95)</td>
<td>10.4%</td>
</tr>
<tr>
<td>Israel</td>
<td>388</td>
<td>477</td>
<td>1.08</td>
<td>(0.53–2.19)</td>
<td>6.6%</td>
</tr>
<tr>
<td>MDACC</td>
<td>477</td>
<td>271</td>
<td>1.56</td>
<td>(0.74–3.28)</td>
<td>6.2%</td>
</tr>
<tr>
<td>MSKCC</td>
<td>291</td>
<td>376</td>
<td>0.58</td>
<td>(0.34–1.00)</td>
<td>9.6%</td>
</tr>
<tr>
<td>Mayo</td>
<td>357</td>
<td>451</td>
<td>0.66</td>
<td>(0.39–1.12)</td>
<td>10.1%</td>
</tr>
<tr>
<td>NorthShore</td>
<td>131</td>
<td>172</td>
<td>1.00</td>
<td>(0.41–2.44)</td>
<td>4.3%</td>
</tr>
<tr>
<td>Sweden</td>
<td>411</td>
<td>748</td>
<td>0.73</td>
<td>(0.51–1.05)</td>
<td>14.8%</td>
</tr>
<tr>
<td>UCSF</td>
<td>336</td>
<td>323</td>
<td>0.67</td>
<td>(0.35–0.93)</td>
<td>10.8%</td>
</tr>
<tr>
<td>UK</td>
<td>453</td>
<td>112</td>
<td>0.48</td>
<td>(0.24–0.98)</td>
<td>7.6%</td>
</tr>
</tbody>
</table>

Random-effects model
(heterogeneity: I² = 38%, τ² = 0.0455, P = 0.0956)
examine H2 receptor antagonists (i.e., cimetidine), given that the brain has H1, H2, and H3 receptors (31). The joint effects of using antihistamines in conjunction with steroids, decongestants, inhalers, or nasal sprays also warrant elucidation.

Our study has some limitations inherent to multisite consortia. There is a substantial amount of site-to-site heterogeneity between our 14 sites; thus, we have provided the site-specific effect estimates for key analyses. Because of differences in infrastructure, resources, and institutional policies, different types of controls and questionnaire administration methods had to be used across sites. However, we conducted a series of sensitivity analyses (detailed in ref. 34) to ensure that control type or questionnaire administration method did not discernably bias the results presented here. Nonetheless, we are unsure why the site-specific OR from UCSF demonstrates a significant adverse association between respiratory allergies and glioma here, as previous UCSF studies have reported inverse associations similar to those observed at our other sites (11, 20, 42).

A common limitation in retrospective studies of glioma is the use of proxy respondents for cases who have cognitive impairment. The proportion of proxy responses in our study is low (<10%), and exclusion of proxy responses did not meaningfully change the results of our analyses. Furthermore, Chen and colleagues (1) has previously provided evidence that the associations observed in case–control studies of atopy and glioma are unlikely to be due to bias from proxy reporting. A related issue is the possibility that glioma cases may not remember past exposures accurately due to cognitive deficits. However, the associations reported here have also been found in prospective cohort studies, nested case–control studies, and meta-analyses of the existing literature (1–3, 7, 21).

A substantial amount of data on the inverse association between atopic conditions and glioma has accumulated (36, 37). In 2011, Davis and Al-Alem (36) delineated the available evidence for each of Bradford-Hill’s causal criteria in their commentary, suggesting that the current knowledge on atopy and glioma supports a potentially causal underlying relationship. Two of the most important concerns about the atopy–glioma relationship relate to the temporality of reported allergies (or lack of allergies) relative to glioma development and the idea that glioma cases may not accurately remember having atopic conditions, thus under-reporting them compared with controls. However, given the series of different study designs and exposure assessment tactics used to evaluate these associations, there is now at least some evidence to allay both of these concerns. The findings from the GIICC study support the existing evidence that the relationship between atopy and glioma is unlikely to be coincidental. Thus, future research should begin to focus on clarifying the biologic mechanisms contributing to this long-observed inverse relationship.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): R. Zhou, M.R. Wrensch, G.N. Armstrong, R.B. Jenkins, M.L. Bondy
Study supervision: M.R. Wrensch, S.H. Olson, R.B. Jenkins, R. Lai, M.L. Bondy
Other (provided data): C. Johansen

Grant Support
This work was supported by grants from the NIH, Bethesda, MD: R01CA139020 (to M.L. Bondy) and R01CA52689 (to M.R. Wrensch). All authors received support from R01CA139020 (to M.L. Bondy). Additional support was provided by the McNair Medical Institute and the Population Sciences Biorepository at Baylor College of Medicine (P30CA125123; to M.E. Scheurer).

Received August 7, 2015; revised October 22, 2015; accepted October 23, 2015; published online February 5, 2016.

References

Approaching a Scientific Consensus on the Association between Allergies and Glioma Risk: A Report from the Glioma International Case-Control Study

E. Susan Amirian, Renke Zhou, Margaret R. Wrensch, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/25/2/282

Supplementary Material
Access the most recent supplemental material at:
http://cebp.aacrjournals.org/content/suppl/2016/04/15/25.2.282.DC1

Cited articles
This article cites 45 articles, 7 of which you can access for free at:
http://cebp.aacrjournals.org/content/25/2/282.full#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/25/2/282.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link:
http://cebp.aacrjournals.org/content/25/2/282
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.