
ligation (LIG3/4) outperformed the reverse sequence
(LIG1/2) with higher R2 (mean R2 ¼ 0.867 and 0.855,
respectively; Table 1). Finally, there was minimal
impact of changing the volume of material taken for-
ward for the Infinium assay (Mean jDbj > 0.3: 7,455 and
7,962 for LIG1 and LIG2, respectively; Table 1).

Impact of data normalization
There is consensus that Infinium 450K b-values should

be normalized (28, 29) and several methods have been
proposed. We considered three normalization methods
(minfi-Illumina, SWAN, and DASEN) in addition to
using raw (un-normalized) b-values. Overall, all nor-
malization techniques ranked the different experimen-
tal conditions identically on all performance metrics.
Notably, there were differences observed in the mag-
nitude and direction of the Db between FF-FFPE by
normalization method. Compared with DASEN (Fig.
4), there was a tendency for minfi-Illumina to overes-
timate the methylation status of FFPE samples (vs. FF)
with substantially more loci above the diagonal line
(Supplementary Fig. S1). The Db between FF-FFPE sam-
ples were normally distributed with a mean Db of 0.002
using the DASEN method. There was a significant shift

toward higher b-values within the FFPE samples (neg-
ative Db) when using minfi-Illumina (mean Db¼�0.028,
P ¼ 6.03 � 10�8; Supplementary Fig. S2). Among all
methods, DASEN also yielded significantly less loci
with jDbj > 0.3 (mean jDbj > 0.3 ¼ 7,831 across LIG
samples and 2,794 for RES) while minfi-Illumina
resulted in the highest number (mean jDbj > 0.3 ¼
18,082 across LIG samples and 5,528 for RES, P <
0.0001). The mean Db and number of discrepant loci
(jDbj > 0.3) between FF-FFPE for all normalization
methods are presented in Supplementary Tables S3 and
S4, respectively.

Testing of Restore methodology in archived FFPE
tissues

The optimized conditions of 250 ng FFPE-derived
DNA using the Illumina Restore kit (RES2) were
applied to a set of archived FFPE tissues collected
between 1998 and 2005 as part of a cooperative group
anal cancer clinical trial. Of the 186 cases, 121 (65%) had
�250 ng DNA. In quality control testing, the DCt of DNA
from RTOG FFPE tissues ranged from �1.03 to 4.73; all
121 samples passed quality control testing. Percent
missing CpG loci were <3% for all but 1 sample

Figure 3. Density correlation plot between internal replicate samples. Correlations are shown using (A) the Restore kit (RES2 vs. RES3) and (B) REPLI-g Ligase
(LIG1 vs. LIG2) for each tumor. Colors range from blue (low point density) to red (high point density), with the highest density along the diagonal.
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(>5%), which was excluded. b-Values from two replicate
samples repeated across batches (Case-ID 37 and 370)
were highly correlated (R2 ¼ 0.984 and 0.931, Fig. 5) and
had few CpG loci with jDbj > 0.3 (29 and 1,483, respec-
tively). The distribution of b-values for the 121 FFPE
samples from RTOG exhibited a consistent pattern
(Supplementary Fig. S3B) that was comparable with
FF-FFPE pairs (Patient A, B, and C, Supplementary Fig.
S3A). All samples, regardless of storage type, had b-val-
ue peaks at 0.2 and 0.8 and variability between b-values
of 0.3 and 0.6. PCA for all samples showed no outliers or
batch-effects (data not shown). Taken together, these
data demonstrate that using the Illumina Restore Kit
with 250 ng of genomic DNA from archived pretreat-
ment biopsy specimens more than 10 years old can
result in high quality epigenomic data.

Discussion
The Illumina Restore kit outperformed the RELPI-g

ligation method for restoring FFPE-derived DNA before
use on the Infinium 450K methylation array. The Restore
method had the best overall performance regardless of
starting amount of DNA tested and was consistent across
several data normalization methods, although DASEN
normalization performed best. The drawbacks of the
Restore kit include added costs per sample (�$80 vs.
$24 in US$, respectively) and additional processing time
(�4 hours per batch). The Thirwell method with modifi-
cation may also be an acceptable option when sufficiently
large effect sizes are expected (e.g., jDbj > 0.5). Our find-
ingsprovidevaluable guidance for selecting aDNArepair

method for FFPE samples before analysis on the Infinium
450K array and highlight several important factors for
consideration when designing epigenome-wide associa-
tion studies, including cost, DNA requirements, and pro-
cessing of resultant data.

Many cancers, such as anal, rectal, and esophageal, are
treatedwith chemoradiation before surgery and only small
pretreatment diagnostic FFPE biopsies are available for
molecular analysis. The best method for repairing DNA
from these tissue types for genome-widemethylation anal-
ysis (e.g.,most representative ofmatchedFF tissue)hadnot
been determined. Our study provides evidence that
"restored" FFPE-derived DNA generated b-values from
the Illumina 450K array that were representative of FF
tissues. We then validated these finding using DNA from
pretreatment FFPE biopsies archived as part of the RTOG
98-11 anal cancer trial (21). DNA extracted from pretreat-
ment FFPE biopsies met quality standards and yielded
high-quality methylation data, as determined by a low
percentage of undetectable probes, a consistent distribu-
tion of b-values across the array, and highly correlated
b-values from sample replicates. Notably, the use of 250 ng
starting DNA, instead of 500 ng as recommended by
Thirwell and colleagues (17), increased our sample size by
43 cases (36% increase) that had DNA yields between 250
ng and 500 ng. The delineation of the optimal experimental
conditions and restore methods should open the door for
the characterization of genome-wide methylation in a
number of cancers that remain heretofore inadequately
studied from an epigenomic standpoint.

Using a comprehensive set of quality measures, we
systematically compared two methods and three

Table 1. Summary of b-value correlation (R2) and discordance (jDbj) between FF-FFPE pairs for REPLI-g
Ligation and the Restore methods

R2 of b-values FF-FFPE pairsa Discordant loci between FF-FFPE pairsb
Overlap of discordant

locic

Patient
Overall

Patient
Overall

Pairwise by
patient

Overall

A B C Mean � SD A B C Mean � SD % CpG-Loci AB AC BC ABC

LIG1 0.857 0.812 0.900 0.856 � 0.044 8,254 10,338 3,772 7,455 � 3,355 1.54% 638 120 137 23
LIG2 0.849 0.810 0.901 0.853 � 0.046 9,415 10,638 3,834 7,962 � 3,627 1.64% 728 139 142 27
LIG3 0.905 0.836 0.902 0.881 � 0.039 3,212 9,892 4,323 5,809 � 3,579 1.20% 190 65 156 7
LIG4 0.860 0.804 0.898 0.854 � 0.047 10,250 15,168 4,390 9,936 � 5,396 2.05% 774 163 244 19
RES1 0.939 0.888 0.918 0.915 � 0.026 1,124 3,402 3,206 2,577 � 1,262 0.53% 111 51 65 19
RES2 0.941 0.875 0.919 0.912 � 0.034 1,149 4,662 3,053 2,955 � 1,759 0.61% 146 34 72 14
RES3 0.938 0.881 0.920 0.913 � 0.029 1,214 3,969 3,263 2,815 � 1,431 0.58% 136 35 65 15

aPearson correlation coefficient comparing FF versus FFPE b-values for each patient sample, by experimental condition. Mean R2 for
LIG and RES samples differed significantly by Student t test (P ¼ 0.0028).
bThe number of discordant CpG-loci defined as jDbj > 0.3 between FF and FFPE. Mean number of discordant CpG-loci differed
significantly between LIG and RES samples (Student t test, P ¼ 0.0012). Percent of CpC-loci with jDbj > 0.3 out of total CpG-loci
evaluated (N ¼ 485,512) for each condition.
cOverlap of individual discordant CpG-loci (jDbj > 0.3) across patient samples (A, B, and C), pairwise and overall.
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experimental parameters for repairing nonuniformly
fragmented FFPE-derived DNA before WGA and eval-
uation on the Infinium 450K methylation array. To our
knowledge, this is the first study to directly compare the
Illumina Restore kit to the methods by Thirwell and
colleagues (17) before analysis on the Infinium 450K
array. The overall correlations of b-values between FF
and FFPE tissues observed in this study was similar, if
not greater, than those previously reported for the
Infinium 27K array (17, 18). Lechner and colleagues

demonstrated that FFPE DNA repaired using the
REPLI-g ligase was sufficient for use on the Illumina
450K array when stringent quality control criteria were
applied before data analysis and large effect sizes were
observed [e.g., differential methylation between human
papillomavirus (HPV) positive vs. HPV-negative head
and neck cancers; ref. 30). In contrast to Jasmine and
colleagues (18), our data suggest that there is minimal
misclassification of b-values generated from FFPE DNA
for both the REPLI-g ligase and the Restore; however,

Figure 4. Representative density correlation plot between FF-FFPE pairs. Correlation of DASEN normalized b-values for (A) Restore (RES1 vs. FF) and (B)
REPLI-g Ligase (LIG3vs. FF) for eachpatient sample.C, correlationbetweenFFPERestore-processed samples by inputDNAamount (500ngRES1vs. 250ng
RES2).
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the Restore method outperformed the REPLI-g ligase
method.

Overall, our findings that the Restore processed sam-
ples provided b-values representative of FF tissues are in
agreement with those reported by Dumenil and collea-
gues (31), who analyzed 21 FF-FFPE colorectal cancer
tissue pairs using the Illumina Restore and Illumina
450K array. They reported highly consistent b-values
across FF-FFPEpairs, very lowpercentage of undetectable
probes (<1%), and overlap in differentially methylated
loci between FFPE and FF tissues (31). However, Dumenil
and colleagues did not compare the Restoremethod to the
less expensive REPLI-g ligation method nor did they
consider more than one data normalization method. As
both our study andDumenil observed somedifferences in
b-values between FF and restored FFPE-derived DNA (as
expected), we strongly advocate that a minimum
jDbj-threshold (e.g., jDbj > 0.3) be utilized, in addition to
statistical significance, when identifying differentially
methylated loci from Illumina 450K data.

The array-based DNA methylation data normaliza-
tion field is still nascent with new normalization tech-
niques being proposed and methods continuing to be
debated (see review by Wilhelm–Benartzi and collea-
gues, ref. 28). This is in contrast to the more mature
array-based methods such as gene expression. An
important observation of this study is that the selection
of the best experimental protocol was independent of
the four different normalization methods investigated.
Nonetheless, the DASEN (25) technique performed best
among the methods tested. This could be explained by
the fact that DASEN is a global sample-to-sample nor-
malization technique while minfi-Illumina and SWAN
normalize each sample independently.

The validity of our findings is strengthened by our
experimental rigor, including the inclusion of all paired
samples on the same chip to reduce chip-to-chip variation.
Although our experimental study consisted of only three
paired cases, these specimens are representative of typical
FFPE tissues thatwould be included in larger studieswith

variation in specimen age and patient gender. This was
also evident by the variability observed in themethylation
data. The experimental findings were successfully tested
on 121 anal cancer FFPE tissues collected within a clinical
trial, thus demonstrating the applicability of this method
to clinical specimens from several pathology laboratories.
We included two types of cancer in this study, colorectal
and anal to represent (i) tumors with sufficient material to
obtain FF and FFPEmatched samples that provided >2 mg
ofDNAand (ii) small pretreatment biopsieswithminimal
amounts of DNA, respectively. This study did not include
normal tissues, as examined by Jasmine and colleagues
(18). However, as the goal was to identify a method that
generated methylation results within FFPE tissues as
similar as possible tomatchedFF tissue, the lack of normal
tissues or use of different tumor types did not impact our
conclusions.

This study demonstrated that FFPE-derived DNA pro-
cessed using the Illumina Restore provides robust
genome-widemethylation results that are similar to those
from optimally stored matched FF tissues. This DNA
repair method is recommended above the REPLI-g liga-
tion method for future epigenomic studies. Aberrant
methylation occurs during critical processes of aging,
development, and carcinogenesis (2, 3); as such, these
recommendationswill havewidespread implications and
should greatly increase the breadth of diseases that can
undergo methylomic profiling. This may, in turn, lead to
further elucidation of disease pathogenesis, identification
of novel biomarkers, and the development of targeted
therapies.
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Figure 5. Density correlation plots
for RTOG FFPE tissue internal
replicates using Restore method.
Correlations are shown using the
Restore kit (RES2 condition) for
archived FFPE tissues collected
from Case-ID 37 (A) and 370 (B)
within the RTOG 98-11 clinical trial.
Colors range from blue (low-point
density) to red (high-point density),
with the highest density along the
diagonal as expected.
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