Null Results in Brief

Association between Genetic Polymorphisms of Macrophage Scavenger Receptor 1 Gene and Risk of Prostate Cancer in the Health Professionals Follow-up Study

Yen-Ching Chen,1,5 Edward Giovannucci,1,2,3 Peter Kraft,4 and David J. Hunter1,2,3

1Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School; Departments of Nutrition and Epidemiology and 2Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts; and 3Research Center for Genes, Environment, and Human Health, and Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan, Republic of China

Abstract

Background: Macrophage scavenger receptor 1 (MSR1) is involved in chronic inflammation, which is a risk factor for prostate cancer. Association studies assessing the relationship between sequence variants of MSR1 and prostate cancer are inconsistent. We hypothesized that sequence variants of MSR1 were associated with prostate cancer risk.

Methods: In a nested case-control design within the Health Professionals Follow-up Study, we identified 700 participants with prostate cancer diagnosed after they had provided a blood specimen in 1993 and before January 2000. Controls were 700 age-matched men without prostate cancer who had had a prostate-specific antigen test after providing a blood specimen. We genotyped three common (>5%) single nucleotide polymorphisms (SNP) that have been reported previously to be associated with risk of prostate cancer.

Results: None of these MSR1 SNPs nor estimated haplotypes were associated with prostate cancer risk (P for the global test for haplotypes = 0.89). These MSR1 SNPs also did not appear to be associated with higher-grade or advanced-stage prostate cancer.

Conclusion: The association between these sequence variants of MSR1 and the risk of prostate cancer was null. Further study of aggressive prostate cancer may be warranted, as we had limited power to assess these. (Cancer Epidemiol Biomarkers Prev 2008;17(4): 1001–3)
MSR1 and Prostate Cancer

Table 1. Characteristics of MSR1 SNPs

<table>
<thead>
<tr>
<th>SNP</th>
<th>Nucleotide change</th>
<th>Location</th>
<th>rs #</th>
<th>Controls</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minor allele freq (%)</td>
<td>Hardy-Weinberg equilibrium P</td>
<td>Minor allele freq (%)</td>
<td>Hardy-Weinberg equilibrium P</td>
<td></td>
</tr>
<tr>
<td>PRO3</td>
<td>A→G</td>
<td>Promoter</td>
<td>rs433235</td>
<td>8.8</td>
<td>0.08</td>
</tr>
<tr>
<td>IVS5-59</td>
<td>C→A</td>
<td>Intron 5</td>
<td>N/A</td>
<td>4.9</td>
<td><0.01</td>
</tr>
<tr>
<td>P275A</td>
<td>C→G</td>
<td>Exon 6</td>
<td>rs3747531</td>
<td>5.1</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 2. OR between MSR1 SNPs and haplotypes and the risk of prostate cancer

<table>
<thead>
<tr>
<th>SNP</th>
<th>Prevalence among controls, % (95% CI)</th>
<th>Global test P = 0.89</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 copies</td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Case/control</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>PRO3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVS5-59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P275A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haplotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hap1: ACG</td>
<td>85.3 (83.5-87.2)</td>
<td>20/16</td>
</tr>
<tr>
<td>Hap2: ACC</td>
<td>5.1 (3.9-6.2)</td>
<td>625/631</td>
</tr>
<tr>
<td>Hap3: CGG</td>
<td>4.8 (3.7-5.9)</td>
<td>641/635</td>
</tr>
<tr>
<td>Cumulative frequency (%)</td>
<td>92.5</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: From left to right, the haplotypes above were composed of PRO3, IVS5-59, and P275A.

p tested the null hypothesis: OR1 copy = OR2 copies = 1.
rise to the cases and were composed of 94% Caucasians. Results were similar after the exclusion of non-Caucasians.

Chronic intraprostatic inflammation has been reported to increase the risk of prostate cancer (7). Our previous study (8) showed that variants in the innate immune gene TLR4 played a role in prostate cancer susceptibility. However, in our study and most previous studies, no association between sequence variants of MSR1 and prostate cancer risk has been observed.

Acknowledgments
We thank Monica Coleman for assistance, Pati Soule and Ana-Tereza Andrade for DNA sample extraction, and the Partners High-Throughput Genotyping Center (Dr. David Kwiatkowski, Alison Brown, and Maura Regan) for genotyping.

References
Association between Genetic Polymorphisms of Macrophage Scavenger Receptor 1 Gene and Risk of Prostate Cancer in the Health Professionals Follow-up Study

Yen-Ching Chen, Edward Giovannucci, Peter Kraft, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/17/4/1001

Cited articles
This article cites 21 articles, 6 of which you can access for free at:
http://cebp.aacrjournals.org/content/17/4/1001.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/17/4/1001.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cebp.aacrjournals.org/content/17/4/1001.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.