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Race, Ethnicity, Ancestry, and Genetics

Historically, racial groups have been defined by common
geographic origins and shared physical characteristics,
such as skin color, facial features, and hair texture.
Linnaeus’s Systema Naturae (1) described four racial
groups (Europeanus, Asiaticus, Americanus, and Africa-
nus), which were subdivided in 1775 by Johann
Blumenbach into Caucasian, Mongolian, Ethiopian,
American, and Malay. Current commonly used racial/
ethnic categories are those defined by the U.S. Census
Bureau (http://www.census.gov). Although racial/eth-
nic classifications are not systematically or uniformly
defined or applied (2, 3), genetic studies using poly-
morphic loci have shown that self-identified race or
ethnicity correlate with ancestral population of origin
(4-6). Aside from ancestry, cultural and behavioral
factors influence an individual’s self-identified race/
ethnicity (7, 8). Thus, race/ethnicity should be recog-
nized as a complex composite variable. Here, we define
race/ethnicity as a self-identified concept of ancestry,
culture, and behavior, such as an individual may report
to the U.S. census or a research study.

Classifying individuals into classes that represent
heterogeneous racial/ethnic groups may simplify data
collection and analysis, but it may also misclassify a
person’s actual ancestral background (that is, the origins
of their familial lineage; ref. 9) and limit assessment of
variation within racial/ethnic groups that is relevant for
understanding disease risk or outcome. For example,
regional estimates of European ancestry among African
Americans vary widely from 3.5% among the Gullah Sea
Islanders of South Carolina (10) to 22.5% among African
Americans in New Orleans (11). Using self-reported
race/ethnicity as a proxy for ancestral background is

even more problematic in Latinos, who show substantial
variation based on country of birth or nationality;
estimates of the proportion of African, European, and
Native American ancestry are 37%, 45%, and 18% in
Puerto Ricans and 8%, 61%, and 31% in Mexicans (12).
Furthermore, research methods that allow choices of only
one racial/ethnic group may be inadequate because
many persons can trace their ancestry to multiple
ancestral populations. More than 2.5% of United States
residents reported that they belonged to more than one
racial/ethnic group in the 2000 Census (13).

Here, we provide an overview of the issue of
population stratification and how to test for and adjust
for it using ancestry estimation techniques. Population
stratification refers to differences in allele frequencies
between cases and controls due to systematic differences
in ancestry rather than association of genes with disease
(14). We also discuss how to choose the appropriate
genomic markers for ancestry estimation.

Ancestry and Bias in Molecular Epidemiologic
Association Studies

Much variation in genetic ancestry can exist within or
between racial/ethnic groups, thereby causing signifi-
cant population stratification to be present not only in
recently admixed populations like African Americans
and Latinos (15-17) but also in European American
populations (18-21) and historically isolated populations
including Icelanders (22). A consequence of population
stratification is the potential for increased allelic associ-
ations and deviations from Hardy-Weinberg equilibrium
(23). Another consequence of population stratification is
bias in the estimate of genetic associations, which can
lead to incorrect inferences as well as inconsistency
across reports (24). In order for bias due to population
stratification to exist, both of the following must be true:
(a) the frequency of the marker genotype of interest
varies significantly by race/ethnicity and (b) the back-
ground disease prevalence varies significantly by race/
ethnicity. If either of these is not fulfilled, bias due to
population stratification cannot occur. Bias due to
population stratification can induce both false-positive
and false-negative associations (24, 25). This bias has
been shown in some studies to be small in magnitude
(26-28) and bounded by the magnitude of the difference
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in background disease rates across the populations being
compared (29). Simulation studies have shown that the
adverse effects of population stratification increase with
increasing sample size (25, 30). An unresolved question is
how large the difference in disease rates or genotypes
frequencies must be for meaningful bias to arise.

When race/ethnicity can be accurately described in
terms of actual ancestry and there is ancestral homoge-
neity in a study population, standard epidemiologic
approaches of matching or statistical adjustment by race/
ethnicity may be sufficient to remove or reduce bias due
to population stratification. Controlling for self-reported
race has generally been thought to suffice (31); however,
self-reported race/ethnicity and/or ancestry can be quite
unreliable. Burnett et al. (32) showed that only 49% to
68% of non-Hispanic European American siblings agreed
on their ancestry. Recent data show that matching on
ancestry is more robust. However, in many populations,
whether recently admixed or not, individuals cannot
accurately report their precise ancestry (32, 33).

Other approaches exist that account for ancestry and
minimize the potential for bias due to population
stratification. The transmission-disequilibrium test has
been shown to be the most robust test with respect to
controlling for population stratification (34-36). However,
because it requires data from parent-child triads, it may
be too expensive or impractical to implement for late-
onset complex diseases. Therefore, other methods have
been developed to test for and/or adjust for population
stratification in case-control studies, although no true
consensus has been reached as to which method is best
(27, 37). These methods all use genotype information
either from a set of random markers and/or from a set of
selected ancestry informative markers (AIM). AIMs are
defined as markers that show large allele frequency
differences between ancestral populations (21, 38-40).
These methods for testing for and/or adjusting for
population stratification can be broadly classified into
three classes: (a) genomic control (30, 41-44), (b) struc-
tured association (45-57), and (c) other (58-62).

Genomic control was one of the first methods
developed to adjust for population stratification (41-44).
The genomic control technique uses a set of noncandi-
date, random markers (sometimes called null markers) to
estimate an inflation factor, k ; k is equal to 1 if there is no
population stratification present. This inflation is as-
sumed to be caused by population stratification and the
genomic control method corrects the standard m2

association test statistic by this factor, where the new
m2 / k test statistic still has a m2 distribution. Therefore,
genomic control performs a uniform adjustment to all
association tests assuming the same inflation factor. One
of the main assumptions of this method is that if the
study population comes from a larger population made
up of a mixture of subpopulations with different disease
prevalences and disease allele frequencies, then the m2

association test statistic follows a noncentral m2 distribu-
tion (52). If the noncentral variable is truly small, then
adjusting by the estimated inflation factor k is a good
approximation to this distribution; however, if the
noncentrality variable is truly large, then adjusting for
the estimated inflation factor k will not be sufficient to
prevent false-positive associations and loss of statistical
power (62). This method considers group-level popula-

tion stratification only (as defined by racial/ethnic
category) and can help to control against false-positive
associations but not against false-negative associations. If
AIMs are used instead of random markers, more false-
positive associations will result simply because the AIMs
show large population differences in allele frequencies
and there will be a tendency towards overcorrection (62).
Genomic control, in general, is a relatively computation-
ally easy method to implement and interpret.

Structured association methods use Bayesian techni-
ques to assign individuals to clusters or subpopulation
classes using information from a set of noncandidate,
unlinked loci under a model of admixture (45-57). The
structured association methods use a Bayesian, Monte
Carlo Markov Chain approach to simultaneously esti-
mate two pieces of information: (a) a multidimensional
vector of all allele frequencies for all subpopulations at
all loci and (b) a vector of populations of ancestral origin
for every allele for every individual. Assumptions
are made that these vectors are from separate Dirichlet
distributions with different hypervariables. These
models originally assumed both linkage equilibrium
and Hardy-Weinberg equilibrium but have now been
modified for situations where linkage disequilibrium is
present (45). Tests for association within each cluster or
subpopulation class are then undertaken using these
markers. This method considers both individual-level
and group-level population stratification. In structured
association approaches, genotype information from sets
of random markers or AIMs may be used. The most
commonly used implementations of structured associa-
tion are the programs STRUCTURE (45, 51-53) and
ADMIXMAP (46-50). These programs use similar struc-
tured association methods to estimate individual-level
and/or group-level ancestry, but ADMIXMAP can also
simultaneously model the association between a candi-
date genotype and the trait of interest allowing for
the error associated with estimating ancestry to be
included in the association test. However, unresolved
issues with structured association techniques still exist
that include deciding on the optimal clustering similarity
metric, distinguishing the optimal number of ancestral
clusters, and determining the biological meaning of the
clusters.

The estimation of genomic ancestry at the individual
or group level and the use of this information in
genotype-disease association studies in place of race/
ethnicity to measure stratification (63-68) can also be
considered a structured association technique. The utility
of using individual genetic ancestry estimates for
understanding complex disease risk has recently been
shown in genetic association studies of asthma (15, 16),
cardiovascular disease-related phenotypes (68), insulin-
related phenotypes (65), and early-onset lung cancer (66).
Wilson et al. observed that frequency of risk genotypes in
six drug-metabolizing genes varied by genetically de-
fined ancestry and that self-reported race/ethnicity was
an insufficient and inaccurate representation of these
ancestral clusters (69).

Other techniques that can be used to correct for the
effects of population stratification include principal
component methods (58, 61, 62), a latent variable
approach using a stratification score (59), and an
approach based on molecular analysis of variance (60).
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The principal components approaches use genotype data
to estimate axes of variation that can be interpreted as
describing continuous ancestral heterogeneity within a
group of individuals (70). These axes of variation are
defined as the top eigenvectors of a covariance matrix
between individuals in the study population that was
formed using genotype information from random
markers or AIMs. Then, the association between geno-
types and phenotypes can be adjusted for the association
attributable to ancestry along each axis. This method is
insensitive to the number of inferred axes and can be
easily done on a genome-wide scale. In addition, the
appropriate number of axes of variation can be formally
tested. The latent variable approach (59) assigns each
individual to an ancestral strata using a stratification
score that is created from a latent variable using
information from additional genotyped markers (ran-
dom or AIMs). This latent variable is created using a
generalized partial least-squares approach and it is
assumed that using this latent variable to stratify the
data will estimate the true association between disease
and candidate genotype. Tests for association between
the disease locus and candidate locus are done within
each stratum. Generalized partial least squares approach
is similar to principal components methods, except that it
is able to model variability in both the marker data and
the trait at once. This method requires fewer assumptions
than genomic control, structured association, and prin-
cipal component methods, can accommodate multilocus
haplotypes, and is computationally simple. A final
approach (60) constructs a genotype similarity matrix,
from genotype information from random markers or
AIMs, and then tests the relationship between any
grouping factor or quantitative measure and the vari-
ability in the genotypic similarities of individuals. This
approach is similar to AMOVA (71) and the Mantel-
based test statistic (72) in that differences by various
factors of interest between groups of individuals or
population with adjustment for diversity in ancestral
genetic background can be systematically tested. This
method can be easily adapted to be used in multiple
regression-like test settings and shows excellent power
for low levels of subpopulation variation.

Because of the vast number of options now available
for assessing and controlling for population stratification,
care must be taken to ensure that all assumptions of the
method are being met and that the method of choice is
actually testing the intended hypothesis.

AIMs and Ancestry Estimation

Estimation of genetic ancestry can be achieved by
genotyping AIMs. As defined above, AIMs are unlinked
markers found throughout the genome that show large
allele frequency differences (denoted d) between the
relevant ancestral populations (21, 38-40). The two most
commonly used methods for ancestry estimation from
AIMs are maximum likelihood estimation (73, 74) and
structured association clustering techniques as imple-
mented in STRUCTURE (45, 51-53) and ADMIXMAP
(46-50). These methods have been shown to be compa-
rable in terms of accuracy (50, 52, 75), but their validity is
dependent on the informativeness of the panel of AIMs
being used as well as the availability of allele and
genotype frequency data (76).

Simulation studies were first used to show that 50 to
100 AIMs are needed to accurately assign one’s individ-
ual ancestry; fewer markers (f40 AIMs) are needed
when the average allele frequency difference between
ancestral populations (denoted d) of the panel of markers
is z0.6 (4, 15, 75). However, the minimal d needed can
vary from study to study. Hence, multiple investigators
have proposed information calculations on the informa-
tiveness for ancestry analyses of specific markers (77-79).
Fisher’s information is the inverse of the maximum
likelihood estimation of the ancestral proportion and
therefore has a direct relationship to the precision of the
ancestral proportion estimate (77). Rosenberg et al. (79)
developed three information statistics, which produce
similar results to each other and to the Fisher’s
information statistic but may produce upwardly biased
estimates in small samples. Other measures that have
been used include Wright’s FST (80), expected heterozy-
gosity, or the number of alleles present by subpopula-
tion. Wright’s FST is only useful if there are two
subpopulations that have mixed in equal contributions.
This assumption may not be appropriate in situations
of continuous gene flow, as may be acting in U.S.
populations (49). The information statistics proposed by
Rosenberg et al. (79) and the Fisher’s information statistic
are relevant and useful for multiple reasons: (a) they both
allow for multiple alleles at a locus [and thus can used
for microsatellites or single nucleotide polymorphisms
(SNP) so these types of markers can be compared directly
for ancestry informativeness], (b) they both use informa-
tion on allele frequencies within an ancestral population
and the absolute differences in allele frequencies by pairs
of ancestral populations, and (c) they both take into
account multiple mixing ancestral populations in a single
analysis (77). Therefore, using either Fisher’s information
or one of new information measures proposed by
Rosenberg et al. (79) is likely to provide the most useful
approach to determine the choice of a panel of AIMs.

There are currently several existing AIMs panels
that can be implemented in genetic association studies
(Table 1). Most of these panels consist of SNPs, although
some include microsatellites. The choice of markers
depends on the marker’s ancestry informativeness,
which depends on the value of d (38, 39, 81, 82). The
choice can also depend on other population variables
(79), such as the relative ancestral proportional contri-
butions from each of the parental populations (77) and
how many ancestral populations have mixed. A practical
understanding of the history of the immigration and
migration history of the study population is critical to
accurately select an appropriate panel of AIMs. Knowl-
edge of this history is also critical to establish the
analytical models that require knowledge of how many
and which of the ancestral parental populations should
be considered for robust ancestry estimation.

Not all AIM panels are equivalent. For example, an
AIMs panel assembled for Mexican Americans might be
inappropriate for use in a Puerto Rican sample, because
the level of African ancestry differs between these
populations. Thus, estimation of ancestral proportions
is highly dependent on (a) knowledge of parental
populations, (b) choice of markers for ancestry estimation
(that is, informativeness for ancestry analyses),
(c ) estimation of the parental allele frequencies,
(d) method for ancestry estimation, and (e) level of
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(Continued on the following page)

Table 1. Published genome-wide panels of AIMs appropriate for ancestry analyses

Type of
markers

Population
studied

Total no.
individuals
genotyped

Reference No. AIMs Web site

SNPs and
diallelic
insertion/
deletions

European American >1,000 Shriver et al.
(39) and
Parra et al. (11)

f75-100 dbSNP database
(http://www.ncbi.nlm.
nih.gov/SNP),
keyword: PSUANTH

African American
Hispanic
African
Jamaican

Short
tandem
repeats

African American 175 Smith et al. (38) 744 Laboratory of
Genomic Diversity
(http://lgd.nci.nih.gov)

Hispanic
European American
Asian

Microsatellites
and diallelic
insertion/
deletions

European American DNA
pooling

used

Collins-Schramm
et al. (81, 82)

151 for Mexican
American
and 97 for

African
American

University of
California-Davis,
Rowe Program
(http://roweprogram.
ucdavis.edu)

Mexican American
African American

University of
California-Santa
Cruz Human Genome
Project Center
(http://genome.ucsc.edu)

Amerindian
African

SNPs European American >300 Smith et al. (83) 3,011 Laboratory of
Genomic Diversity
(http://lgd.nci.nih.gov)

African American
African
Chinese
Amerindian

SNPs European American >500 Collins-Schramm
et al. (84)

123 University of
California-Davis,
Rowe Program
(http://roweprogram.
ucdavis.edu)

Mexican American
Japanese

The SNP Consortium Allele
Frequency Project
(http://snp.cshl.org)

Amerindian

SNPs European American 71 Hinds et al. (85) 1,586,383 Perlegen Genome Browser
(http://www.hapmap.org/
cgi-perl/gbrowse/gbrowse)

African American

Haplotype data
(http://research.calit2.net/
hap/wgha)

Asian American

SNPs European American 85 Miller et al. (86) 1,410 The SNP Consortium Allele
Frequency Project
(http://snp.cshl.org)

African American
Asian

SNPs African 269 Altshuler et al. and
The International
HapMap
Consortium (87)

877,351
polymorphic
in all three

groups

The HapMap Project
(http://www.hapmap.org)European American

Chinese

Japanese 75,997
monomorphic

across all
three groups

SNPs 12 worldwide
population samples

203 Shriver et al. (21) 11,555 Shriver Laboratory
(http://www.anthro.psu.edu/
biolab/index.html)

SNPs 6 European
populations

>1,000 Seldin et al. (19) 400-800 University of California-Davis,
Rowe Program
(http://roweprogram.
ucdavis.edu)

European American
Ashkenazi Jewish
Asian American
African American
Amerindians

SNPs European American >300 Tian et al. (88) >4,000 University of
California-Davis,
Rowe Program
(http://roweprogram.
ucdavis.edu)

Centre d’Etude du
Polymorphisme
Humain Europeans
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population stratification in the admixed population.
Applying generic AIM sets developed in one population
to an ancestrally different population may be suboptimal.
Therefore, we propose three principles for choosing AIMs
for a specific study: (a) markers should have a d z 0.6; (b)
a measure of informativeness (77, 79) for multiple
possible combinations of ancestral proportions should
be calculated and those markers that are informative
across multiple different ancestral proportion combina-
tions should be prioritized; and (c) knowledge of
immigration/migration patterns in the region from which
the study population was drawn should inform choice of
ancestral parental populations and the number of
ancestral parental populations.

Summary

Explanations for observed differences within and be-
tween populations in disease incidence and outcome are
an important area of research. To maximize the potential
for epidemiologic association studies to identify mean-
ingful, reproducible genetic associations in large studies
of common diseases, it is imperative that careful
consideration be given to population stratification. In
some situations, self-reported race/ethnicity may be
sufficient to alleviate concerns about bias due to
population stratification. However, in many situations,
genotype-based estimates of group and/or individual
ancestry using AIMs may be required to properly
account for ancestry, admixture, and bias due to
population stratification in association studies.
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