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Introduction

Methionine, the precursor for the universal methyl donor,
S-adenosylmethionine, is produced through the irreversible
transfer of a methyl group from 5-methyltetrahydrofolate. This
reaction is regulated by two enzymes, methionine synthase
(MTR) and methionine synthase reductase (MTRR). MTR is
polymorphic at nucleotide 2,756 (A-to-G) and has been
associated with decreased plasma homocysteine levels (1-3).
MTRR is polymorphic at nucleotide 66 (A-to-G) and the
variant has a lower affinity for MTR (4) and is inconsistently
associated with homocysteine level (5-7), although it is a risk
factor for neural tube defects (8) and Down syndrome (9) in
conditions of higher homocysteine. There is no report on either
MTR or MTRR in relation to breast cancer risk. In an extension
of our previous reports that folate intake was inversely
associated with breast cancer risk (10) and that this association
was particularly strong among women with the methylenete-
trahydrofolate reductase (MTHFR) 677TT genotype (11), we
investigated whether these associations may be modified by
MTR and MTRR genotypes.

Materials and Methods

The Shanghai Breast Cancer Study is a large population-based
case-control study conducted in urban Shanghai, China.
Detailed study methods have been published previously (12).
In brief, cases ages between 25 and 64 years were identified
through a rapid case-ascertainment system supplemented by
the population-based Shanghai Cancer Registry. Controls were
identified from the Shanghai Resident Registry and frequency
matched to the expected age distribution of cases by 5-year age
groups. All subjects completed an in-person interview. Dietary
intakes were assessed using a 76-item food frequency
questionnaire that captured >85% of food intake in Shanghai
(13). Blood samples were collected from 1,193 (82%) cases and
1,310 (84%) controls and used in this study for genotyping
assays. MTRR Ile22Met (A66G, rs1801394) genotyping was
done using the Taqman 5V-Nuclease Assay (C_3068176_10;
Applied Biosystems, Foster City, CA). MTR Asp919Gly

(A2756G, rs1805087) genotyping was done by BioServe
Biotechnologies Ltd. (Laurel, MD) using Masscode assay (14).
The consistency rate of quality control samples was 100% for
MTR A2756G and 96% for MTRR A66G .

All dietary intake analyses only included cases (92.1%) and
controls (91.3%) who did not use alcohol regularly or take
vitamin supplements. Unconditional logistic regression mod-
els were used to calculate odds ratios (OR) and their 95%
confidence intervals (95% CI) after adjusting for potential
confounding variables. Diet was categorized into tertiles based
on the control distribution. Energy was adjusted using the
standard multivariate method (15). Stratified analyses were
used to evaluate the potential modifying effect of MTHFR
genotypes and folate and folate cofactor intakes.

Results

The frequencies of the MTR A2756G and MTRR A66G alleles
were 0.10 and 0.24, respectively, among the controls who were
not statistically different from the cases (data not shown). The
genotype distributions among both cases and controls did not
differ from the predicted distribution under Hardy-Weinberg
equilibrium. Risk of breast cancer did not differ statistically by
the MTR or MTRR genotypes either overall or by menopausal
status nor did the genotypes modify the null association with
MTHFR C677T genotype (Table 1). Likewise, there were no
clear differences in risk for breast cancer and the joint MTHFR-
MTR-MTRR genotypes.

The joint associations of MTR and MTRR genotypes and
dietary folate and folate cofactor intake with breast cancer risk
are presented in Table 2. Low intake of folate was associated
with an increased risk among all genotypes, and the strength
of the association did not differ by genotype. Risk associated
with the genotypes was not statistically significantly different
than one within all strata of methionine, vitamin B12, and
vitamin B6 intakes.

Discussion

We found that there was no statistically significant association
between the risk for breast cancer and MTR A2756G or MTRR
A66G genotypes. We further found that this association was
not modified by MTHFR C677T genotypes or intakes of folate,
methionine, vitamin B12, or vitamin B6. This is the first report
of MTR and MTRR genotypes in relation to breast cancer risk.
MTR has been associated with a reduced risk for both
colorectal cancer (16, 17) and acute lymphoblastic leukemia
(18) and increased risk for malignant lymphoma (19) and not
associated with cancer risk for non-Hodgkin’s lymphoma
(18, 20) and uterine cancer (21). In the only two studies that
have evaluated the MTRR A66G genotype in relation to cancer
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risk, there was no observed association with acute lympho-
blastic leukemia, non-Hodgkin’s lymphoma, or gastric cardia
cancer (20, 22), although there was an increased esophageal
cancer risk among those who did not consume alcohol (22).

MTR and MTRR are critical enzymes responsible for the
biosynthesis of methionine, the precursor for methylation
reactions, and the regeneration of tetrahydrofolate for nucle-
otide biosynthesis. Under conditions of adequate methionine,

f40% of homocysteine is remethylated to methionine through
the activity of these enzymes (23). Alterations, therefore, in
the function of these enzymes could have important effects
on DNA methylation, synthesis, and repair. The MTRR
A66G variant has a 3- to 4-fold lower affinity for MTR (4)
and has been associated with altered blood or plasma levels
of homocysteine, folate, or vitamin B12 in some but not all
studies (5-7, 24, 25). Likewise, reports of MTR A2756G and
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Table 1. MTR, MTRR, and MTHFR genotype frequencies and adjusted OR (95% CI) for breast cancer among Chinese
women, Shanghai Breast Cancer Study, 1996 to 1998

Genotype Total sample MTHFR genotype

677CC 677CT 677TT

Cases/
Controls

Adjusted OR
(95% CI)*

Cases/
controls

Adjusted OR
(95% CI)*

Cases/
controls

Adjusted OR
(95% CI)*

Cases/
Controls

Adjusted
OR (95% CI)*

MTR A2756G
AA 877/932 1.0 (Reference) 290/306 1.0 (Reference) 428/427 1.1 (0.9-1.3) 140/146 1.0 (0.8-1.4)
AG 181/195 1.0 (0.8-1.2)
GG 8/11 0.8 (0.3-2.0)
AG/GG 65/57 1.2 (0.8-1.8) 88/101 0.9 (0.7-1.3) 32/33 1.1 (0.7-1.8)

MTRR A66G
AA 621/687 1.0 (Reference) 199/210 1.0 (Reference) 316/326 1.0 (0.8-1.3) 96/119 0.8 (0.6-1.2)
AG 393/422 1.0 (0.9-1.2) 133/139 1.0 (0.7-1.3) 182/188 1.0 (0.8-1.4) 64/58 1.2 (0.8-1.8)
GG 70/76 1.0 (0.7-1.4) 24/23 1.1 (0.6-2.0) 29/36 0.8 (0.5-1.4) 14/11 1.5 (0.6-3.4)

MTR/MTRR
AA/AA 482/526 1.0 (Reference) 164/169 1.0 (Reference) 236/249 1.0 (0.7-1.3) 75/92 0.8 (0.6-1.2)
AA/AG or GG 107/108 1.0 (0.7-1.3) 31/31 1.1 (0.6-1.8) 59/58 1.0 (0.7-1.6) 16/20 0.8 (0.4-1.6)
AG or GG/AA 359/373 1.0 (0.9-1.3) 117/127 0.9 (0.7-1.3) 174/165 1.0 (0.8-1.5) 58/50 1.2 (0.8-1.9)
AG or GG/AG or GG 75/85 1.0 (0.7-1.4) 30/24 1.2 (0.7-2.2) 27/43 0.6 (0.4-1.1) 15/13 1.4 (0.6-3.0)

*All ORs are adjusted for age, history of fibroadenoma, waist-to-hip ratio, age at first live birth, physical activity, and total meat.

Table 2. Joint association of MTR and MTRR genotypes and folate and folate cofactor intake with breast cancer risk
among Chinese women, Shanghai Breast Cancer Study, 1996 to 1998

Genotype Cases/
controls

Adjusted OR
(95% CI)*

Cases/
controls

Adjusted OR
(95% CI)*

Cases/
controls

Adjusted OR
(95% CI)*

T1 (high) T2 T3

Daily folate intake
MTR A2756G

AA 236/292 1.0 (Reference) 299/298 1.5 (1.1-2.0) 280/276 1.7 (1.2-2.4)
AG/GG 46/56 1.0 (0.7-1.6) 61/51 1.8 (1.2-2.8) 58/65 1.6 (1.0-2.5)

MTRR A66G
AA 166/209 1.0 (Reference) 205/210 1.4 (1.0-1.9) 196/199 1.6 (1.1-2.3)
AG 106/134 0.9 (0.7-1.3) 137/131 1.6 (1.1-2.2) 127/130 1.6 (1.1-2.4)
GG 17/25 0.8 (0.4-1.5) 26/16 2.4 (1.2-4.7) 22/27 1.4 (0.8-2.7)

Daily methionine intake
MTR A2756G

AA 312/292 1.0 (Reference) 233/295 0.9 (0.7-1.2) 270/279 1.2 (0.8-1.7)
AG/GG 52/49 1.0 (0.7-1.6) 56/55 1.1 (0.7-1.7) 57/68 1.0 (0.6-1.7)

MTRR A66G
AA 220/209 1.0 (Reference) 166/216 0.8 (0.6-1.2) 181/193 1.2 (0.8-1.7)
AG 133/134 0.9 (0.7-1.3) 112/120 1.0 (0.7-1.5) 125/141 1.1 (0.7-1.7)
GG 19/24 0.7 (0.4-1.3) 25/22 1.4 (0.7-2.6) 21/22 1.2 (0.6-2.3)

Daily vitamin B12 intake
MTR A2756G

AA 285/308 1.0 (Reference) 273/276 1.1 (0.8-1.4) 257/282 1.2 (0.8-1.5)
AG/GG 55/46 1.3 (0.8-2.0) 53/64 0.9 (0.6-1.4) 57/62 1.2 (0.8-1.8)

MTRR A66G
AA 200/205 1.0 (Reference) 182/208 0.9 (0.7-1.2) 185/205 1.1 (0.8-1.5)
AG 122/134 1.0 (0.7-1.3) 134/130 1.1 (0.8-1.5) 114/131 1.1 (0.7-1.5)
GG 23/28 0.9 (0.5-1.6) 19/23 0.8 (0.4-1.6) 23/17 1.6 (0.8-3.1)

Daily vitamin B6 intake
MTR A2756G

AA 303/299 1.0 (Reference) 267/286 0.9 (0.7-1.2) 246/281 0.9 (0.6-1.3)
AG/GG 56/46 1.1 (0.8-1.8) 55/62 0.9 (0.6-1.3) 54/64 0.9 (0.6-1.4)

MTRR A66G
AA 220/205 1.0 (Reference) 186/214 0.8 (0.6-1.1) 161/199 0.7 (0.5-1.1)
AG 128/142 0.8 (0.6-1.1) 122/120 0.9 (0.7-1.3) 120/133 0.9 (0.6-1.3)
GG 23/22 0.9 (0.5-1.6) 23/23 0.9 (0.5-1.8) 19/23 0.8 (0.4-1.6)

*All ORs are adjusted for age, history of fibroadenoma, waist-to-hip ratio, age at first live birth, physical activity, total meat intake, total energy intake, and intake of
folate and/or its cofactors.

Cancer Epidemiology, Biomarkers & Prevention

Cancer Epidemiol Biomarkers Prev 2006;15(3). March 2006



homocysteine are conflicting (7, 26). We did not find any
statistically significant associations between these genotypes
and breast cancer risk even among conditions of replete and
low intake. Nor did we observe any associations when the low-
activity MTHFR , the rate-limiting enzyme for the methionine
cycle, was either present or absent. If these particular variants
of these critical enzymes do indeed have important functional
consequences, our data suggested that these consequences do
not seem likely to alter one-carbon metabolism sufficiently to
affect risk for breast cancer.

This case-control study is one of the largest and most
comprehensive evaluations of genetic variants in enzymes
involved in the remethylation of homocysteine. Potential
biases are limited in this study because both cases and controls
had very high participation rates (>90%) and high blood
donation rates (>80%). Fruit and vegetable intake, the major
contributors to folate, methionine, and vitamin B6 intakes, did
not significantly differ between cases and controls, and recall
of diet would unlikely be related to genotype. We also
observed little confounding when we carefully adjusted for
known risk factors and any possible residual confounders
would need to be very strong to alter the null associations
observed in this study. We cannot exclude the possibility that
these genotypes may be related to risk of breast cancer in
an older population; however, the null association was not
modified by menopausal status. Particular strengths of our
study include the population-based design, the estimation of
folate and cofactor intake in a population of nonusers of
alcohol and vitamin supplements, and the large sample size
that facilitated examination of modifying effects.

In summary, we found that MTR and MTRR genotypes are
not likely to play an important independent role in breast
cancer etiology. This is the first evaluation of these genotypes
with breast cancer risk and future studies are warranted in
populations with different nutrient intake.
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