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Folate Supplementation: Too Much of a Good Thing?
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Folate is critical for nucleotide synthesis and methylation
reactions and has been associated with a number of health
benefits. The accumulation of good news—ranging from the
established reduction of neural tube defects to the putative
prevention of several types of cancer, cardiovascular disease,
and possibly dementia—has made it seem a ‘‘wonder drug’’
that is not only inexpensive, but also safe for use as a
chemopreventive agent. Although research to date supports
several of these claims, some warning lights have appeared
recently, challenging us to adopt a more nuanced view of
folate use and raising the need for investigations of the
potential health hazards of excessive intakes. Recent data also
suggest the need to distinguish between naturally occurring
folates and folic acid, the synthetic form added to supplements
and fortified foods, further complicating the already complex
story of a potent vitamin.

History of Folate and Fortification

Folate was isolated in 1941 from spinach and named after the
Latin word folium (= leaf; ref. 1). Although the initial impetus
for research on folate metabolism was to find a cure for
anemia, it was soon recognized that the administration of
folate enhanced the growth of existing tumors and that folate
metabolism may be a promising target for anticancer drug
design (2). Already developed by the late 1940s, folate
antagonists, such as methotrexate, have rapidly become a
mainstay of cancer chemotherapy (3). Because of the role of
folate in nucleotide synthesis, deficiency affects primarily
rapidly dividing tissues, such as the epithelium of the
gastrointestinal tract, hematopoietic cells, and tumors. This
increased need of proliferating tissues for folate explains why
macrocytic anemia is one of the clinical manifestations of folate
deficiency. Similarly, the crucial role of folate in preventing
neural tube defects may be attributed to the high fetal
requirement for folate to sustain rapid cell division; clinical
trials have shown a clear reduction in neural tube defects with
periconceptional folic acid administration (4-6). This success
story led policy makers, including the USPHS in 1992 and the
Institute of Medicine in 1998, to recommend that all women of
reproductive age consume 400 Ag folic acid daily from
supplements or fortified foods (7, 8). Unfortunately, health
promotion efforts targeting childbearing women have been
largely unsuccessful in achieving this level of intake. There-
fore, policy makers opted for generalized folic acid fortification
of flour and uncooked cereal grain products at a targeted level
of 140 Ag/100 g. This level of fortification was mandatory in

the United States by January 1998 and was also implemented
in Canada (9, 10). Initial data suggest that this public health
measure was successful, resulting in a substantial reduction in
the prevalence of neural tube defects (11-14).

Biomarker studies postfortification showed dramatic
increases in blood measurements of folate and a concurrent
decrease in plasma homocysteine (which is inversely associ-
ated with folate status; refs. 15, 16). Although these reports
were reassuring in that the population fraction with low serum
folate was minimized (from 16% to 0.5%; ref. 16), they also
raised concerns that fortification exceeded the original daily
intake target by as much as 2-fold (17-19). This intake of folic
acid from fortified food (f100 to 200 Ag/d) coincides today
with high consumption of nutritional supplements in the U.S.
population (f400 Ag/standard multivitamin; ref. 20) as well
as increased availability and marketing of nutrition bars,
drinks, and other fortified foods (often supplemented at 400
Ag/serving), resulting in a markedly elevated intake of folic
acid in the population from multiple sources.

Folic Acid in Supplements—Above the Tolerable
Upper Level?

The safety of chronic very high intakes of folic acid is largely
unknown. The Institute of Medicine recommends a tolerable
upper intake level for folic acid from supplements or fortified
foods of 1,000 Ag/d for adults and between 300 and 400 Ag/d
for children between the ages 1 and 8 (21). These upper intake
levels were developed primarily to avoid masking the anemia
and missing the neuropathy of vitamin B12 deficiency because
very few data were available on other possible adverse effects
of chronic high intakes (21). Putting the upper intake level in
context, an adult who consumes two standard multivitamins
daily (at 400 Ag each) can easily exceed the daily upper intake
level, as can a child who consumes substantial amounts of
breakfast cereals (which are often supplemented at a level of
400 Ag/serving). However, the clinical significance of the upper
intake levels is not well established (see research needs below)
and they were instituted as a first attempt to raise awareness
that not all levels may be safe.

The use of nutritional supplements in the United States is
high and probably increasing (20, 22, 23). Supplement use is
greatest among older individuals, and more common among
women and those who are White or Asian, with distinct
regional differences (20, 22, 24). National Health and Nutrition
Examination Survey reports that 63% of individuals over age 60
years take a dietary supplement: 40% take folic acid–contain-
ing multivitamins, 7% B-complex vitamins, and 2% folic acid
supplements (20). Among female supplement users, 55% take
multiple supplements and 17% take four or more supplements
(20). The INTERMAP study of middle-aged participants
reports that folate intakes among supplement users are f2-
fold higher than among non–supplement users (f600 versus
f300 Ag/d; ref. 24). Thus, it is not surprising that more than
half of women over age 60 years (the group with highest
supplement use) in National Health and Nutrition Examination
Survey have serum folate levels in excess of 40 nmol/L (16).
The potential health effects of these high concentrations are
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unclear; even more unclear is whether such high intakes
prevent cancer, especially among the elderly.

A Dual Role for Folate in Carcinogenesis?

An increasing body of evidence suggests that folate plays a dual
role in carcinogenesis, involving both the prevention of early
lesions and potential harm once preneoplastic lesions have
developed. Observational studies suggest that high folate
intakes reduce cancer risk, particularly for malignancies of the
colon, pancreas, esophagus, stomach, and possibly cervix and
breast. However, folate can promote the growth of existing
cancers and, as noted above, antifolate drugs are potent
chemotherapeutic agents. Initial experimental studies have
suggested that folate supplementation can enhance the carcino-
genic progression of mammary tumors (25). So where is the line
between benefit and possible harm? Elegant work by Kim et al.
(26) has shown that the dose and timing of folate interventions
may be critical. For example, in two colorectal cancer mouse
models, modest doses of folate supplementation suppressed the
development and progression of colorectal cancer. However,
this beneficial effect was observed only for folate given before
the establishment of neoplastic foci in the intestine (27, 28). Once
preneoplastic lesions were present, dietary folate enhanced the
development and progression of colorectal cancer (27, 28).
Similar results in a rat model of breast cancer suggest that
folate deficiency inhibited, rather than enhanced, cancer deve-
lopment (25, 29). Preliminary results from the first randomized-
controlled trial of folic acid for chemoprevention of colorectal
polyps have been recently reported at a national meeting (30).
More than 1,000 participants with a recent history of colorectal
adenomas were randomly assigned to 1 mg folic acid daily, with
or without aspirin. Follow-up colonoscopies were scheduled f3
years after the initial endoscopy and supplementation continued
until a second surveillance exam. In this trial, folic acid use did
not prevent the recurrence of colorectal adenomas (rate ratio,
1.04). However, participants in the folic acid group tended to
have greater adenoma multiplicity, with a significant increase
among those who continued treatment throughout the second

follow-up interval (rate ratio, 1.44; 95% confidence interval, 1.03-
2.02; ref. 30). These preliminary findings are consistent with a
role of folate in fostering the progression of premalignant
lesions. Although participants had the initial polyp removed
before study entry, the increased risk of later multiple
metachronous polyps suggests that, among a subgroup of
individuals who had multiple preneoplastic lesions, folic acid
supplementation may have promoted their growth. The results
also suggest that this effect may be modest at supplementation
below 1,000 Ag/d, but do not provide any information about the
effects on growth of existing polyps that are not detected during
a colonoscopy.

What are the possible mechanisms of a dual role for folate in
carcinogenesis that depends on timing and perhaps dose? The
function of folate in nucleotide synthesis may be central. Folate
is essential for the synthesis of thymidine via thymidylate
synthase, and of purines, as illustrated in Fig. 1. Folate defi-
ciency results in a reduced production of thymidine and misin-
corporation of uracil into DNA (31, 32). During the excision of
uracil, single-strand breaks and, eventually, double-strand
breaks can occur (32). Because of the lack of reliable biomarkers,
the effects of folate deficiency on purine synthesis and apurinic
sites in DNA are less well established. However, some epide-
miologic studies suggest that this common form of DNA
damage may be a critical mechanism linking folate to cancer risk
(33, 34). If we assume that folate deficiency in a rapidly proli-
ferating tissue (such as the colon) enhances genomic instability,
then the probability of a loss of function of genes that prevent
adenoma formation increases. Although an initial animal study
did not observe an effect of folate deficiency on the rate of APC
mutations, the sample size may have been too small to obtain
reliable results (35). After a small tumor or microadenoma has
been established, this tumor may grow more rapidly with folate
supplementation, due to the greater provision of nucleotides:
Experimental results from Melnyk et al. (36) show that folate
repletion to folate-deficient cells results in a promotional
stimulus, and that these cells, if injected into nude mice, show
greater tumorigenic potential and aggressive growth.

How could one estimate the net effect of these two
potentially competing mechanisms of folate supplementation
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Figure 1. Overview of folate metabolism, entry of folic acid and physiologic folates into the cell, and links to methylation reactions and
nucleotide synthesis (modified with permission from ref. 3). THF, tetrahydrofolate; DHF, dihydrofolate; RFC, reduced folate carrier; hFR,
human folate receptor; MTHFR, 5,10-methylenetetrahydrofolate reductase; DHFR, dihydrofolate reductase; GART, glycinamide ribonucleotide
transformylase; AICARFT, 5-amino-imidazole-4-carboxamide ribonucleotide transformylase; AICAR, 5-aminoimidazole-4-carboxamide
ribonucleotide; GAR, glycinamide ribonucleotide; SAM (AdoMet), S-adenosylmethionine; SAH (AdoHcy), S-adenosylhomocysteine; SHMT,
serine-hydroxy-methyltransferase; MS, methionine synthase; TS, thymidylate synthase; MT, methyltransferases.

Folate Supplementation and Health

Cancer Epidemiol Biomarkers Prev 2006;15(2). February 2006

Research. 
on November 29, 2021. © 2006 American Association for Cancercebp.aacrjournals.org Downloaded from 

http://cebp.aacrjournals.org/


on carcinogenesis? The epidemiologic evidence to date
suggests that higher folate intakes generally correlate with a
reduced risk, thus implying an overall reduction in risk.
(Nonetheless, it needs to be remembered that folate intake is
highly correlated with supplementary vitamin intake in
general, which raises the potential for confounding.) Building
on a previously developed mathematical model of colorectal
carcinogenesis (37), we have investigated the question of a ‘‘net
effect’’ of the putative opposing mechanisms by simulating the
effect of a folic acid intervention on reduction of mutations and
increase in tumor growth simultaneously. Initial results
suggest that the net effect of folic acid fortification on
individual colon cancer risk is modified by age: Whereas
children may be more likely to experience reduced colorectal
cancer rates in the future, rates among middle-aged adults are
likely to increase.1 The findings of this mathematical model
clearly illustrate the need for a better quantification of the
molecular effects of folate (see below).

Folate and Carcinogenesis—Yet Another Discrepancy
between Observational Studies and Clinical Trials?

When the results from the folate polyp-prevention trial (30) are
published, it will be important to interpret them carefully and
to avoid rejecting folate as a chemoprevention agent altogeth-
er. The discrepancy between results from observational studies
and randomized controlled studies has recently been dis-
cussed in this journal (38). The story of folate adds yet another
possible explanation for such disparate findings: differences
in biological effects of potent agents depending on the stage of
carcinogenesis. Almost all chemoprevention trials aim at
prevention among those with a history of earlier lesions
(precancer or cancer), largely because of the higher risk of
subsequent tumors in such patients, and thus reduced cost and
time and increased power. However, we should not lose sight
of the limitations of this approach: As discussed above, for
folate, the experimental evidence suggests that administration
is beneficial before the appearance of preneoplastic lesions, but
potentially harmful after. Whereas a randomized trial that
evaluates the influence of folic acid administration on
recurrent polyps after a primary diagnosis will be able to
answer exactly that question, it is unlikely to provide relevant
information regarding folic acid supplementation early in life.
Primary prevention trials of folate (intervention before early
lesions) would be expensive and of long duration. We may
need to continue to rely on less explicit evidence, including
that from ecologic studies of folic acid fortification by age
cohort, observational epidemiologic studies, and animal
experiments.

Folate and Cardiovascular Disease

The discrepancy between findings from observational studies
and randomized controlled trials is now also apparent for
another possible health benefit attributed to folate. Because of
the unequivocal homocysteine-lowering effects of folic acid
supplementation and experimental data suggesting a role of
homocysteine in endothelial damage, the prevention of
cardiovascular disease was assumed to be another health
benefit of increased folate intakes (39). Unfortunately, the first
results from randomized controlled trials with actual disease
outcomes provide no evidence for such an effect (40). We may
need to be more cautious of biomarkers of disease until they
are established as being in the causal pathway.

Other Potential Deleterious Effects of High Folic Acid

Two recent studies raise concern about the implications of very
high folic acid intakes on other health outcomes. A prospective
cohort of 3,718 elderly individuals (>65 years) who participat-
ed in the Chicago Health and Aging Project investigated
cognitive decline over the course of 6 years in relation to
dietary intakes of folate and vitamin B12. Unexpectedly, high
folate intake was associated with a faster rate of cognitive
decline. Those in the highest quintile of folate intake
(comprised largely of supplement users with a mean intake
of 742 Ag/d) had a statistically significantly more pronounced
decline, and this association was particularly strong for
supplement use in excess of 400 Ag/d. Limitations of the
study were its lack of biomarker assessments and the potential
for confounding by indication. Nevertheless, these unexpected
findings urge us toward further research on the cognitive
implications of high levels of folic acid in older individuals.

An additional concern has arisen in relation to immune
function: In a preliminary cross-sectional study of 104
postmenopausal women, we reported an inverse U-shaped
relationship between folate from dietary sources and supple-
ments and natural killer cell cytotoxicity (41). Natural killer
cells are part of the innate immune response and low
cytotoxicity may increase cancer risk (42). Unmetabolized folic
acid was detected in 78% of fasting plasma samples from the
participants. This is the first study reporting the presence of
this compound in healthy individuals who are not subjected to
pharmacologic doses of folic acid. The presence of unmetab-
olized folic acid was associated with decreased natural killer
cytotoxicity, and a trend toward lower natural killer cytotox-
icity with greater amounts of folic acid in plasma was observed
among older women (>60 years). Although the study should
be considered preliminary, it highlights the need for a better
understanding of the relation of folate to immune function.
No clear mechanism for the association is established. It is possi-
ble that a low capacity to metabolize large amounts of folic
acid, perhaps caused by polymorphisms in the dihydrofolate
reductase (DHFR) gene (43), may play a role. As shown in
Fig. 1, DHFR is critical for reducing folic acid for entry into
folate metabolism.

Folic acid is inexpensive to produce and is characterized by
greater bioavailability than the natural folates (44). Never-
theless, it is not equivalent to the polyglutamated forms of
food folates and enters primarily via a different carrier system
(Fig. 1); thus, it may have different effects on folate-binding
proteins and transporters (45). Another explanation for the
possible adverse effects of excessive intakes of folate is derived
from a mathematical simulation model of folate metabolism
(46). Several enzymes in this pathway function as folate-
binding proteins, which simultaneously inhibits their enzyme
activity. The biochemical properties of the pathway, as
modeled, suggest that there is an optimum folate concentration
above which folate-reaction velocities decline. This theoretical
work requires confirmation in experimental studies, yet
illustrates how an interdisciplinary approach can help under-
stand different aspects of this complicated pathway.

Future Research Needs

It is clear that the relationships between folate and health
outcomes are complex; further, we need a better understand-
ing of the relevant biological mechanisms to avoid misinter-
pretation. For solid tumor carcinogenesis, we need experimental
studies that quantify possible effects of folate on growth of
aberrant crypt foci, polyps, and similar early lesions in other
tissues. The role of folate in hematopoietic malignancies also
needs further research: Hematopoietic cells are particularly
sensitive to folate deficiency and pediatric leukemias and
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lymphomas are commonly treated with antifolate drugs (47).
For malignancies treated with antifolates, we also need to
understand better whether treatment efficacy is altered by
excessive supplement use.

Folate not only plays a role in nucleotide synthesis but
is also critical for the provision of S-adenosylmethionine
(Fig. 1), the universal methyl donor. DNA methylation of
promoter regions has been established as one mechanism of
gene regulation (48). A recent study of agouti mice shows
that methyl supplementation (including folic acid) can alter
the epigenetic gene regulation of offspring (49). Pennisi (50)
subsequently reported on folate supplementation as a means
of modifying morphology in tails of mice with a transpos-
able element in the axin gene. Whether there are other
effects of excessive perinatal folic acid supplementation on
epigenetic mechanisms, less benign than changes in coat
color or unkinking of tails, defines another area of research
need.

We also need more research on the safety of folic acid per se.
Because this compound is now found in the bloodstream, data
are needed on whether there are implications for the transport
of natural folates. Human studies of folic acid at multiple
levels, lasting several months or even years, and monitoring all
beneficial and adverse effects described to date are a critical
step. To understand the health effects of more chronic
long-term intakes of doses at the upper intake level, studies
ancillary to the recently completed randomized controlled
trials of cancer chemoprevention are needed, targeting the
specific outcomes of the animal and human studies described
above, particularly cognitive and immune function. This is
perhaps a unique opportunity to settle the issue of safety of
long-term high intakes.

Epidemiologic studies should expand their investigations
toward the high end of folate intakes and carefully evaluate
the potential for confounding in the interpretation of results.
Finally, there are multiple genetic polymorphisms in folate
metabolism that result in interindividual differences in
response (51). A full genetic screen of mutations in this
biological pathway has not yet been undertaken. Exploration
of the effect of multiple genetic variants, under different
dietary conditions, on critical biomarkers relevant to carcino-
genesis and other health outcomes is essential.

It remains unclear whether the possible deleterious effects of
high folic acid outweigh the known and potential benefits.
Further, this balance may differ across individuals and
populations, by genetic characteristics and by life stage.
Because of the high intake of folic acid from supplements
and fortified foods in a large fraction of the population, these
questions need answers soon.
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