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Abstract

Several previous studies have found the CAG repeat
polymorphism in exon 1 of the androgen receptor (AR)
gene to be associated with breast cancer risk among some
groups of Caucasian and Asian women. In a population-
based case-control study of 488 African-American women
(239 cases and 249 controls), we examined this polymor-
phism along with a polymorphism (�158 G/A) in an
androgen-regulated gene (PSA) whose expression has been
correlated with breast cancer prognosis. Overall, we did not
observe any significant association between the CAG repeat
polymorphism and breast cancer risk. However, among
women with a first-degree family history of breast cancer,
longer CAG repeats were associated with a significantly

increased risk. Women carrying at least one longer allele
[(CAG)n z 22] had a 3-fold increased risk compared to
those with two shorter alleles (odds ratio, 3.18; 95%
confidence interval, 1.08-9.36). There was no significant
association between the PSA gene polymorphism and
breast cancer risk, nor was there significant gene-gene
interaction. In summary, our results further support that
shorter CAG repeats (stronger AR transactivation activity)
may reduce the risk of breast cancer, at least among some
groups of women. Our data, however, are unable to provide
evidence that PSA is the pathway through which the
protective effect of androgens operates. (Cancer Epidemiol
Biomarkers Prev 2005;14(12):2990–4)

Introduction

The role of androgens in the etiology of breast cancer remains
unclear. The tumor growth–inhibitory effects of testosterone
and dihydrotestosterone have been observed in breast cancer
cell lines and in animal models (1), whereas higher circulating
androgen levels have been noted in breast cancer patients
compared with controls (2, 3). Androgen and estrogen levels
are highly correlated. Therefore, a positive association
between androgen levels and breast cancer risk may reflect
the effects of high concomitant estrogen levels and activities.
Adjustment for circulating estrogen has attenuated the
association with testosterone levels in some prospective
studies (4-7), but not in others (8-10). However, because
substantial conversion of androgens to estrogens occurs in
breast adipose tissue (11), adjustment for circulating estrogen
may not adequately adjust for local estrogen levels in the
breast.

An alternative approach is to examine androgen receptor
(AR) gene variants that alter the receptor function. A CAG
repeat polymorphism in exon 1 encodes a variable-length
polyglutamine tract in the transactivation domain of the
protein. Long polyglutamine tract length reduces AR trans-
activation activity in vitro (12-14). Some (15-19), but not all
(20-24) epidemiologic studies found longer CAG repeats
associated with increased breast cancer risk.

The interaction with downstream genes in the androgen
signaling pathway, such as the PSA gene (also named KLK3),
may also be important. Prostate-specific antigen (PSA) protein,
encoded by the PSA gene, is present in breast tissue (25), and
may be a useful prognostic marker in breast cancer (26, 27).
A guanine to adenine substitution (�158 G/A) in an androgen-
responsive element I (ARE-I) of the PSA gene promoter has
been associated with PSA levels in serum or in breast tissue in
some (28-30), but not all studies (31, 32), and has also been
associated with prognosis (30).

We examined the AR CAG length polymorphism and the
single nucleotide polymorphism in the ARE-I of the PSA gene
in relation to breast cancer risk in African-American women, a
population with a notably shorter mean CAG repeat length
and a wider CAG repeat length distribution compared with
Whites and Asians (33).

Materials and Methods

Study Population. Study subjects were participants in a
population-based case-control study conducted in the San
Francisco Bay area (34). In brief, cases aged 35 to 79 years and
newly diagnosed with invasive breast cancer between 1997
and 1999 were identified through the regional cancer registry.
Controls were identified through random digit dialing (81%
response to household enumeration). Two hundred and forty-
nine cases and 255 controls completed a telephone screening
interview (84% of cases and 86% of controls), and an in-person
interview (87% of cases and 82% of controls), and provided a
blood or mouthwash sample (85% of cases and 84% of
controls). DNA was available for 246 cases and 255 controls.
The study was approved by the Institutional Review Boards of
both the University of Southern California and the Northern
California Cancer Center.
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Laboratory Methods. The AR exon 1 CAG repeat variant
was genotyped by simple sequence length polymorphism
analysis. The genomic region containing the CAG repeat was
PCR-amplified using the forward primer 5V-CGCGAAGT-
GATCCAGAAC-3V and the reverse primer 5V-CAGGAC-
CAGGTAGCCTGTG-3V (FAM-labeled; Applied Biosystems,
Foster City, CA). Touchdown thermal cycling was performed.
The resulting PCR product was run on the ABI 3700 capillary
sequencer and allele sizes were scored using GeneScan
software (version 3.5; Applied Biosystems). DNA samples
from 12 male subjects with various CAG repeat lengths
(determined from direct sequencing) were included in each
run as controls. A standard curve was drawn based on these
12 control samples and was used to calculate CAG repeat
number for study subjects.

Genotyping of the single nucleotide polymorphism in
the PSA gene was performed by the TaqMan assay (Applied

Biosystems). The two labeled oligonucleotide probes were
5V-FAM-CAGAACAGCAAGTACTAGCTCTCCCTC-3V and 5V-
CY3-AGAACAGCAAGTGCTAGCTCTCCC-3V. In both probes,
the thymidines were replaced with Propyne-dU to increase
the Tm of the probe f1jC for every addition (Biosearch Tech-
nologies, Inc., Novato, CA). The forward primer was
5V-GGTGCATCCAGGGTGATCTAG-3V and the reverse primer
was 5V-CACACCCAGAGCTGTGGAAG-3V. Nine previously
sequenced DNA samples (three of each genotype) were
included as genotyping controls. Ambiguous genotyping
results were confirmed by sequencing. Concordance
for duplicates (5% random sample of all blood specimens)
was 100%.

Statistical Analysis. We refer to the two AR CAG alleles
carried by each woman as the smaller allele (the shorter of the
two) and the larger allele (the longer of the two). SAS PROC
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Table 1. Characteristics of African-American study participants, by case-control status

Cases (n = 239)* Controls (n = 249)* P

Age
Mean (SD) 55.6 (11.5) 55.3 (11.6) 0.79
Median (interquartile range) 54 (47-64) 54 (46-65) 0.78

Menopausal status
Premenopausal 72 (30.1%) 82 (32.9%)
Postmenopausal 146 (61.1%) 146 (58.6%) 0.80
Undetermined 21 (8.8%) 21 (8.4%)

Education (y)
<12 42 (17.6%) 46 (18.5%)
12 53 (22.2%) 64 (25.7%)
13-16 94 (39.3%) 101 (40.6%)
z17 50 (20.9%) 38 (15.3%) 0.41

First-degree family history
Yes 35 (14.6%) 32 (12.8%)
No 204 (85.4%) 217 (87.2%) 0.57

Benign breast disease
Yes 61 (25.5%) 38 (15.4%)
No 178 (74.5%) 209 (84.6%) 0.006

Age at menarche
<12 52 (21.9%) 55 (22.4%)
12-13 133 (55.9%) 130 (52.9%)
z14 53 (22.3%) 61 (24.8%) 0.76

Age at menopause
Mean (SD) 46.4 (7.02) 46.4 (8.08) 0.97
Median (interquartile range) 48 (44-51) 48 (43-51) 0.78

Number of full-term pregnancies
Nulliparous 44 (18.4%) 34 (13.7%)
1 42 (17.6%) 47 (18.9%)
2 54 (22.6%) 55 (22.1%)
3 43 (18.0%) 48 (19.3%)
z4 56 (23.4%) 65 (26.1%) 0.68

Age at first full-term pregnancy
<20 83 (42.6%) 93 (43.3%)
20-24 59 (30.3%) 79 (36.7%)
25-29 27 (13.9%) 27 (12.6%)
z30 26 (13.3%) 16 (7.4%) 0.18

History of oral contraceptive use
Yes 160 (67.5%) 163 (66.0%)
No 77 (32.5%) 84 (34.0%) 0.72

History of hormone replacement therapy use (postmenopausal women)
Yes 70 (48.0%) 83 (58.0%)
No 76 (52.0%) 60 (42.0%) 0.09

Body mass index in premenopausal women
Mean (SD) 30.1 (6.21) 32.4 (8.20) 0.05
Median (interquartile range) 29.3 (25.0-34.5) 30.5 (25.5-39.9) 0.11
<25 18 (25.0%) 16 (19.5%)
25-29 20 (27.8%) 23 (28.1%)
z30 34 (47.2%) 43 (52.4%) 0.69

Body mass index in postmenopausal women
Mean (SD) 31.2 (6.34) 31.5 (7.17) 0.71
Median (interquartile range) 30.5 (26.6-35.2) 30.8 (26.5-34.6) 0.97
<25 24 (16.6%) 26 (17.8%)
25-29 44 (30.3%) 40 (27.4%)
z30 77 (53.1%) 80 (54.8%) 0.85

*The numbers in the table do not add up due to missing values.
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ALLELE was used to assess Hardy-Weinberg equilibrium of
the CAG length distribution among controls (SAS Institute,
Inc., Cary, NC). Wilcoxon rank sum test was used to compare
the distributions of the repeat lengths (for the smaller and
the larger allele separately). Logistic regression was used to
estimate odds ratios (OR) and 95% confidence intervals (CI) for
the effect of AR CAG repeat length on breast cancer risk. CAG
repeat lengths were dichotomized into short and long using a
cutoff point (CAG = 22) commonly used in previous
publications (17, 18, 20). Other cutoff points, including the
median, were also examined. Women with one or two alleles
z22 were combined given the few women with two alleles
z22. For the PSA gene, ORs and 95% CIs were estimated by
comparing genotypes A/A and G/A to G/G. A test of trend
was performed by including in the logistic model a variable
coded as 0, 1, or 2 for the number of ‘‘at-risk’’ alleles.

All models were adjusted for age (continuous). Adjustment
for other known breast cancer risk factors (see Table 1) did not,
either individually or jointly, change the OR estimates by
>10%. We considered menopausal status (defined as in ref. 17),
hormone replacement therapy use, and first-degree family
history of breast cancer as potential effect modifiers. Formal
tests of effect modification were performed by including the
appropriate interaction terms in the logistic model. To assess
possible interactions between the AR and PSA genes, ORs
were estimated for each AR/PSA genotype combination.

Power for detecting a shift of two CAG repeats between the
distributions of CAG repeat lengths in cases and controls with
a positive family history was estimated by bootstrap (35). With
each bootstrap sample comprising 67 observations (32 cases
and 35 controls), 1,000 samples were drawn with replacement
from the empirical distribution of controls in our data set, with
two CAG repeats being added to the sampled value for each
case. Wilcoxon rank-sum tests were performed on each sample
and the percentage of significant results were calculated.

Results

Genotyping results were missing for 13 subjects (seven cases
and six controls) due to PCR failure (Table 1). The CAG repeat

lengths ranged from 8 to 30 (median = 19) and the distribution
in controls did not show significant departure from Hardy-
Weinberg equilibrium (P = 0.14). Overall, the distributions of
the CAG repeat lengths in cases and controls were almost
identical (P = 0.94 for the smaller allele; P = 0.64 for the larger
allele; Fig. 1A). Compared with women having no allele with
(CAG)n z22 (corresponding to the SS genotype in the
literature), women who carried one or two alleles with (CAG)n
z22 (SL and LL genotypes, respectively) had an OR of 1.09
(95% CI, 0.75-1.57; Table 2). Similar results were obtained when
other cutoff points were used. Mean age at diagnosis of cases
did not differ by their CAG repeat genotypes (data not shown).
The association between CAG repeat genotypes and breast
cancer risk did not differ significantly by menopausal status
(Table 2), and, among postmenopausal women, did not differ
significantly by hormone replacement therapy use (P for
interaction = 0.48, data not shown).

Cases and controls without a first-degree family history of
breast cancer had nearly identical distributions (for both
the smaller and the larger alleles), whereas among subjects
with a family history, the distribution of the larger allele was
noticeably shifted to the right among cases compared with
controls (P = 0.008; Fig. 1B and C). Among women with a
family history, having one or two alleles with 22 or more CAG
repeats was associated with a significantly increased risk (OR,
3.18; 95% CI, 1.08-9.36), whereas no association was observed
among women without a family history (OR, 0.92; 95% CI,
0.62-1.37; P for interaction, 0.03; Table 2). Similar results were
obtained when other cutoff points were used (data not shown).

The distribution of the PSA �158 A/G genotype frequencies
did not show significant departure from Hardy-Weinberg
equilibrium among controls (P = 0.29). There was no significant
association between breast cancer risk and PSA genotype
overall. Nor was there any significant interaction with meno-
pausal status (P = 0.10), or family history (P = 0.82; Table 2).

There was no evidence for a significant gene-gene interac-
tion when the effects of PSA genotype were estimated within
strata defined by the AR genotypes (OR, 1.08; 95% CI, 0.64-1.83
for AG versus AA and OR, 0.80; 95% CI, 0.42-1.54 for GG
versus AA among women with SS genotype and OR, 0.85; 95%
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Figure 1. The cumulative distribu-
tion curves of the CAG repeat
lengths for the smaller and the larger
allele of the two alleles carried by
each woman. A, in all cases (n =
239) and controls (n = 249); *, P =
0.94 (smaller allele), P = 0.64
(larger allele). B, in cases (n = 35)
and controls (n = 32) with a first-
degree family history of breast
cancer; P = 0.62 (smaller allele)
and P = 0.008 (larger allele). C, in
cases (n = 204) and controls (n =
217) without a first-degree family
history of breast cancer; P = 0.93
(smaller allele), P = 0.62 (larger
allele); *, P values are for Wilcoxon
tests. , case_smaller;

, case_larger; ,
control_smaller; – – ,
control_larger.
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CI, 0.42-1.72 for AG versus AA and OR, 1.64; 95% CI, 0.66-4.09
for GG versus AA among women with SL or LL genotypes
(P for interaction = 0.15; data not shown). We were not able to
test for interaction between the AR and the PSA genotypes
among women with a positive family history due to small
sample size.

Discussion

Among African-American women with a first-degree family
history of breast cancer, a significant increase in breast cancer
risk was associated with carrying one or two AR CAG long
alleles. Our results agree with the Nurses’ Health Study that
reported a reduced risk with shorter CAG repeats only
among women with a positive family history of breast cancer
(17), and with a study by Rebbeck et al. in BRCA1 mutation
carriers that found a significant risk reduction associated
with shorter CAG repeats (15). A statistical interaction
between AR genotype and BRCA1 mutation status is strongly
supported by in vitro studies suggesting that BRCA1 protein
is an AR coactivator (36, 37). We had no information available
on BRCA1 mutation status to investigate this interaction.
However, the number of BRCA1 mutation carriers is likely to
be small (38). It is possible that the interaction between family
history and AR CAG genotype observed in our study and in
the Nurses’ Health Study is due, at least in part, to variant(s)
in other gene(s) or to some other familial risk factor(s).

Three other studies (22-24), however, did not confirm the
finding by Rebbeck et al. (15), possibly due to small sample
size. Our family history–positive stratum was also small. But
by examining the entire distribution curve rather than relying
solely on cutpoints, we had reasonable power (74%) to detect a
shift of two CAG repeats between cases and controls with a
family history. Nevertheless, confirmation by studies with
larger numbers of BRCA1 mutation carriers and/or family
history–positive subjects is needed.

Unlike previous studies, we explored the possible mecha-
nism of the androgen effect by examining a genetic variation in
the PSA gene, an AR downstream gene, together with the AR
CAG polymorphism. Some (28, 29) but not all (31, 32) studies
have suggested that a polymorphism in the ARE-I of the PSA
gene (�158 G/A) may contribute to interindividual variations
in serum PSA levels in men. The only study in females found
the A allele to be associated with lower PSA concentration in
breast tumor tissue (30). Cases with the AA genotype (lower
PSA) also had worse survival than cases with GG or GA
genotypes (30).

We found no association with this PSA polymorphism,
possibly because it is not functional. In an in vitro study,
the two alleles showed no differences in PSA gene promoter
activity (32). We speculate that the association of the ARE-I
polymorphism with serum PSA found in some studies may be
a result of its linkage disequilibrium with other functional
polymorphisms in the PSA gene. Several polymorphisms
in the 5V enhancer region of the PSA gene have recently been
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Table 2. The association between the AR CAG and PSA ARE-I �158 G/A polymorphisms and breast cancer in African-
American women

CAG length (S <22; L z22) Cases, n (%) Controls, n (%) OR (95% CI)

All women SS 145 (60.7) 156 (62.7) 1.0
SL or LL 94 (39.3) 93 (37.3) 1.09 (0.75-1.57)

Menopausal status
Premenopausal SS 43 (59.7) 51 (62.2) 1.0

SL or LL 29 (40.3) 31 (37.8) 1.11 (0.58-2.12)
Postmenopausal SS 90 (61.6) 90 (61.6) 1.0

SL or LL 56 (38.4) 56 (38.4) 1.01 (0.63-1.61)
P for interaction = 0.82

First-degree family history
Yes SS 18 (51.4) 25 (78.1) 1.0

SL or LL 17 (48.6) 7 (21.9) 3.18 (1.08-9.36)
No SS 127 (62.3) 131 (60.4) 1.0

SL or LL 77 (37.7) 86 (39.6) 0.92 (0.62-1.37)
P for interaction = 0.03

ARE-I genotypes Cases n (%) Controls n (%) OR (95% CI)

All women AA 65 (27.2) 68 (27.3) 1.0
AG 125 (52.3) 132 (53.0) 0.98 (0.65-1.50)
GG 49 (20.5) 49 (19.7) 1.04 (0.62-1.76)

P for trend = 0.90
Menopausal status

Premenopausal AA 26 (36.1) 28 (34.1) 1.0
AG 31 (43.1) 44 (53.7) 0.75 (0.37-1.52)
GG 15 (20.8) 10 (12.2) 1.81 (0.68-4.84)

P for trend = 0.46
Postmenopausal AA 32 (21.9) 37 (25.3) 1.0

AG 86 (58.9) 74 (50.7) 1.33 (0.76-2.35)
GG 28 (19.2) 35 (24.0) 0.92 (0.47-1.84)

P for trend = 0.86
P for interaction = 0.10

First-degree family history
Yes AA 10 (28.6) 8 (25.0) 1.0

AG 18 (51.4) 19 (59.4) 0.80 (0.25-2.51)
GG 7 (20.0) 5 (15.6) 1.05 (0.24-4.68)

P for trend = 0.99
No AA 55 (27.0) 60 (27.6) 1.0

AG 107 (52.5) 113 (52.1) 1.04 (0.66-1.63)
GG 42 (20.6) 44 (20.3) 1.05 (0.60-1.84)

P for trend = 0.86
P for interaction = 0.82
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associated with serum PSA levels (39). Three of them were also
found to be functional in reporter gene assays (39). However,
the region containing these polymorphisms did not seem to be
critical in stimulating PSA gene transcription in breast cancer
cells (40), suggesting that this enhancer region might be tissue-
specific.

Our finding adds to the literature suggesting that androgen
protects against breast cancer in some groups of women.
Although we could not rule out the involvement of the PSA
pathway in family history–positive women (as we could not
examine any possible gene-gene interaction between AR and
PSA in this small subgroup), we were unable to provide any
evidence that PSA is the pathway through which the protective
effect of androgen operates. Other androgen target genes need
to be investigated. We realize that our study has small sample
size, especially when examining interactions. Our results (both
positive and negative) need to be taken with caution.

This is the first study to examine the AR CAG polymor-
phism in African-American women.
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