Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CEBP Focus Archive
    • Meeting Abstracts
    • Progress and Priorities
    • Collections
      • COVID-19 & Cancer Resource Center
      • Disparities Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Informing Public Health Policy
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Epidemiology, Biomarkers & Prevention
Cancer Epidemiology, Biomarkers & Prevention
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CEBP Focus Archive
    • Meeting Abstracts
    • Progress and Priorities
    • Collections
      • COVID-19 & Cancer Resource Center
      • Disparities Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Informing Public Health Policy
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

A simple mouthwash method for obtaining genomic DNA in molecular epidemiological studies.

A Lum and L Le Marchand
A Lum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Le Marchand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published August 1998
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Genomic DNA for genetic analyses has traditionally been derived from blood samples. With the availability of PCR techniques requiring only minute amounts of DNA and the current demand for high-volume testing, a less invasive, simpler to perform, and cheaper method to obtain DNA is desirable. We developed a method to obtain high-quality genomic DNA from buccal cells that has high acceptability and allows for a large number of PCR assays from a single sample. Sixty subjects vigorously swished 10 ml of undiluted commercial mouthwash in the mouth for 60 s and expelled the liquid into a collection container. DNA was isolated from the buccal cells with a rapid method using proteinase K digestion, phenol-chloroform extraction, and ethanol precipitation. Electrophoretic analysis of the extracted DNA showed detectable levels of high molecular weight genomic DNA in all samples. The DNA yields ranged from 0.2 to 134.0 microg, for an average of 49.7 microg. Using these samples, all 60 subjects were successfully genotyped by PCR-based assays for polymorphisms in the CYP1A1 (MspI and exon 7), CYP2E1 (RsaI), GSTM1, GSTT1, and NQO1 genes, confirming that the quality of DNA isolated from mouthwash samples was sufficient to reliably support PCR amplification. Storage of the (unprocessed) specimens at room temperature or at 37 degrees C for 1 week (temperature conditions that may be encountered when mailing samples) or at -20 degrees C for at least 6 months did not affect the DNA yield or ability to PCR amplify the samples. The results suggest that this mouthwash procedure may be suitable for large community-based studies of genetic susceptibility to disease in which samples can be collected by the participants themselves, mailed back to the study center, and stored for months prior to DNA analysis.

PreviousNext
Back to top
August 1998
Volume 7, Issue 8
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Epidemiology, Biomarkers & Prevention article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A simple mouthwash method for obtaining genomic DNA in molecular epidemiological studies.
(Your Name) has forwarded a page to you from Cancer Epidemiology, Biomarkers & Prevention
(Your Name) thought you would be interested in this article in Cancer Epidemiology, Biomarkers & Prevention.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A simple mouthwash method for obtaining genomic DNA in molecular epidemiological studies.
A Lum and L Le Marchand
Cancer Epidemiol Biomarkers Prev August 1 1998 (7) (8) 719-724;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A simple mouthwash method for obtaining genomic DNA in molecular epidemiological studies.
A Lum and L Le Marchand
Cancer Epidemiol Biomarkers Prev August 1 1998 (7) (8) 719-724;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook   Twitter   LinkedIn   YouTube   RSS

Articles

  • Online First
  • Current Issue
  • Past Issues

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Epidemiology, Biomarkers & Prevention

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Epidemiology, Biomarkers & Prevention
eISSN: 1538-7755
ISSN: 1055-9965

Advertisement