Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • Log out
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CEBP Focus Archive
    • Meeting Abstracts
    • Progress and Priorities
    • Collections
      • COVID-19 & Cancer Resource Center
      • Disparities Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Informing Public Health Policy
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Cancer Epidemiology, Biomarkers & Prevention
Cancer Epidemiology, Biomarkers & Prevention
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • CEBP Focus Archive
    • Meeting Abstracts
    • Progress and Priorities
    • Collections
      • COVID-19 & Cancer Resource Center
      • Disparities Collection
      • Editors' Picks
      • "Best of" Collection
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Informing Public Health Policy
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Gene deletion of glutathione S-transferase theta: correlation with induced genetic damage and potential role in endogenous mutagenesis.

J K Wiencke, S Pemble, B Ketterer and K T Kelsey
J K Wiencke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Pemble
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Ketterer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K T Kelsey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published April 1995
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Genetic traits that confer increased susceptibility to DNA and chromosomal damage from reactive epoxide and peroxides could be important individual risk factors in the development of human cancers. To provide an index of individual sensitivity to expoxides, we previously studied sister chromatid exchange (SCE) induction in peripheral blood lymphocytes and identified a trait involving sensitivity to chromosomal damage by monoepoxybutene and diepoxybutane (DEB), both potential carcinogenic metabolites of 1,3-butadiene. Individuals sensitive to DEB induction of SCEs also had an increased number of background or "spontaneous" SCEs. The present investigation was conducted to test whether a newly described deletion polymorphism in the glutathione S-transferase class theta (GSTT1) was significantly associated with the previously described inherited chromosomal sensitivity to DEB. The background and DEB-induced SCE frequencies in peripheral blood lymphocytes from 78 healthy volunteers were determined with the use of fluorescence plus Giemsa staining. The presence or absence of the homozygous deletion of the GSTT1 gene was determined for each participant using PCR methods. In the present study, we report a close correlation of the DEB sensitivity trait with the novel polymorphism in GSTT1. The GSTT1 polymorphism was also highly associated with the background frequencies of SCE. These studies raise the possibility that DBE is a substrate for GST-theta. Individuals who carry a homozygous deletion of the GSTT1 gene may be at increased risk for genotoxic damage from environmental or occupational 1,3-butadiene exposures. The association of the GSTT1 deletion polymorphism with increases in background SCEs indicates that substrates for this isozyme are encountered commonly in the environment or are endogenous in nature.(ABSTRACT TRUNCATED AT 250 WORDS)

PreviousNext
Back to top
April 1995
Volume 4, Issue 3
  • Table of Contents
  • Table of Contents (PDF)
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Epidemiology, Biomarkers & Prevention article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Gene deletion of glutathione S-transferase theta: correlation with induced genetic damage and potential role in endogenous mutagenesis.
(Your Name) has forwarded a page to you from Cancer Epidemiology, Biomarkers & Prevention
(Your Name) thought you would be interested in this article in Cancer Epidemiology, Biomarkers & Prevention.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Gene deletion of glutathione S-transferase theta: correlation with induced genetic damage and potential role in endogenous mutagenesis.
J K Wiencke, S Pemble, B Ketterer and K T Kelsey
Cancer Epidemiol Biomarkers Prev April 1 1995 (4) (3) 253-259;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Gene deletion of glutathione S-transferase theta: correlation with induced genetic damage and potential role in endogenous mutagenesis.
J K Wiencke, S Pemble, B Ketterer and K T Kelsey
Cancer Epidemiol Biomarkers Prev April 1 1995 (4) (3) 253-259;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook   Twitter   LinkedIn   YouTube   RSS

Articles

  • Online First
  • Current Issue
  • Past Issues

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Epidemiology, Biomarkers & Prevention

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Epidemiology, Biomarkers & Prevention
eISSN: 1538-7755
ISSN: 1055-9965

Advertisement