Abstract
Objective: Exposure to toxins in tobacco smoke is influenced by how a cigarette is smoked. Cigarettes have been designed to allow for a range of puffing behavior and to provide different, nonlinear tar and nicotine yields in response to different puffing profiles. However, puffing behavior and its influence upon risk-exposure has yet to be assessed outside the laboratory, in smokers' natural environment.
Method: Fifty-nine adult smokers used a portable device to measure smoking topography over the course of three 1-week trials. Participants were asked to smoke their usual “regular yield” brand through the device for trial 1 and again, 6 weeks later, at trial 2. Half the subjects were then randomly assigned to switch to a “low-yield” brand for trial 3.
Results: The findings show a high degree of stability in puffing behavior within the same subject over time but considerable variability between smokers. Smokers who were switched to a “low-yield” cigarette increased their total smoke intake per cigarette by 40% (P = 0.007), with no significant change in their salivary cotinine levels. Cigarettes smoked per day and nicotine yield were only weakly associated with salivary cotinine levels; however, salivary cotinine was strongly associated with a composite measure that included cigarettes per day, brand elasticity, and puffing behavior (sr = 0.61, P < 0.001).
Conclusions: These findings provide strong evidence of behavioral compensation to low-yield cigarettes from in vivo measures of smoking behavior. The findings also show the importance of brand elasticity and smoking topography in predicting nicotine uptake and smoke exposure.
Footnotes
↵3 Note that “low yield” typically refers to cigarettes with FTC machine-smoked yields below 0.8 mg of nicotine, although there is no standard definition or regulatory criteria.
↵4 Health Canada's testing regime = 55ml puffs, drawn every 30 seconds, with 100% obstruction of filter vent holes (ref. 32).
-
Grant support: American Cancer Society, Health Canada, the Robert Wood Johnson Foundation, National Cancer Institute grant CA16056, and the Canadian Tobacco Control Research Initiative.
-
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
- Accepted April 8, 2005.
- Received July 7, 2004.
- Revision received March 18, 2005.