Particulate Matter and Cancer Mortality—Letter

William B. Grant

The recent article by Wong and colleagues reported that particulate matter with aerodynamic diameter <2.5 μm (PM$_{2.5}$) was associated with increased risk of mortality rate for all, lung, digestive organs for males and females in Hong Kong and breast, female genital, and lymphohematopoietic cancers in females (1). The mechanism proposed to explain these findings was defects in DNA repair function and replication mostly due to heavy metal content of PM$_{2.5}$ particulates. A more likely mechanism is oxidative damage to DNA by polycyclic aromatic hydrocarbons (PAH) adsorbed by PM$_{2.5}$ (2). PAHs can enter the blood through the lungs and easily reach many organs. PAHs were found to increase risk of digestive tract cancers (3). As smoking tobacco also involves PM$_{2.5}$ and PAH, it would be expected that all cancers associated with smoking (4) would also be affected by PM$_{2.5}$. In fact, that was generally found to be the case in an ecologic study of an index for PM$_{2.5}$ acid deposition, in the United States (5). In that study, mortality rates for 11 types of cancer (respiratory, digestive tract, bladder, female genital, blood, and skin cancer) as well as all-cancer mortality rate were found significantly correlated with acid deposition in 1985 for the period 1970 to 1994 after adjustment for several other cancer risk-modifying factors. Acid deposition is largely due to emissions from coal-fired power plants and is associated with PM$_{2.5}$ particulates largely composed of carbon with adsorbed PAHs along with sulfuric acid. Acid deposition was highest in the northeast.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Received May 9, 2016; accepted May 11, 2016; published OnlineFirst July 14, 2016.

References
Particulate Matter and Cancer Mortality—Letter

William B. Grant

Cancer Epidemiol Biomarkers Prev Published OnlineFirst July 14, 2016.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/1055-9965.EPI-16-0376</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>