Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk

Abstract

Background: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored.

Methods: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium.

Results: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 (conditional \(P = 2.51 \times 10^{-4}\); OR, 1.04; 95% confidence interval [CI], 1.02–1.07) and rs77928427 (\(P = 1.86 \times 10^{-4}\); OR, 1.04; 95% CI, 1.02–1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (\(r^2 \geq 0.90\)) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor–binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue.

Conclusion: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2.

Impact: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk.
Introduction
A common genetic variant at 4q24, rs9790517, was recently identified to be associated with breast cancer risk, through a combined analysis of genome-wide association studies (GWAS) together with data from a large association study using a custom array, iCOGS (1, 2). This risk variant, termed subsequently as the index SNP in this article, is located in intron 11 of TET2, a chromatin-remodeling gene that functions as a tumor suppressor. TET2 has been found to be frequently somatically mutated in multiple cancers, including breast cancer (3–9). However, the index SNP is located in a region with no evidence of functional significance. The initial GWAS reported only the most strongly statistically associated SNP in this region, although many other SNPs at the same locus may also be associated with breast cancer risk, one or more of which are causally related to breast cancer risk. Comprehensive fine-scale mapping may help to identify the variants most likely to be functionally related to risk and may enable the identification of additional independent signals.

Dense fine-scale mapping of GWAS-identified loci has successfully identified novel putative causative variants for several common diseases, including breast cancer (10–17). For example, previous fine-mapping studies of 5p15, 20q16, 2q35, 5q11, and 11q13 have identified multiple independent risk signals as well as potential causative variants in each region, using data from the Breast Cancer Association Consortium (BCAC; refs. 12, 13, 16, 18–20). The index SNP (rs9790517) at 4q24 is close to another SNP, rs7679673 ($r^2 = 0.42$, 23 kb apart), which has been associated with prostate cancer (21). In this fine-mapping project, a dense set of SNPs in this 4q24 region was genotyped in gDNA samples obtained from 106,708 participants included in the BCAC. We then analyzed data from 3,912 genotyped and imputed SNPs in this region in an attempt to identify potential functional variants that may explain the observed association of genetic variants in this locus with breast cancer risk.

Materials and Methods
Study populations
The study included 55,540 breast cancer cases and 51,168 controls from 50 studies participating in the BCAC. Details of the studies, sample selection, and genotypes are described elsewhere (1). The dataset included 39 studies from European-ancestry populations (48,155 cases and 43,612 controls), nine from Asian populations (6,269 cases and 6,624 controls), and two from populations of African ancestry (1,116 cases and 932 controls).
Genotyping of 4q24

A dense set of SNPs at 4q24 was selected for genotyping on iCOGS based on evidence of a prostate cancer–associated SNP, rs7679673 (17), as at the time of the assay design this region had not yet been linked to breast cancer risk. An interval of 596 kb (positions in chr4, 105932103–106528262 from hg19) was identified on the basis of all SNPs with \(r^2 \) > 0.1 with the SNP rs7679673 based on HapMap 2 CEU (22). All SNPs in the interval were then identified from the 1000 Genomes Project CEU (April 2010; ref. 23), together with HapMap 3, and we selected SNPs for genotyping with a minor allelic frequency (MAF) > 2% in Europeans and an Illumina Design score > 0.8. From this set, all SNPs with \(r^2 \) > 0.1 with SNP rs7679673 were selected, together with an additional set of SNPs to tag the remaining SNPs at \(r^2 \) > 0.9. In total, 490 SNPs were successfully genotyped and passed quality control. We imputed genotypes for the remaining SNPs using the program IMPUTE2 (24) and the March 2012 release of the 1000 Genomes Project as a reference. Those imputed SNPs with common SNPs (MAF > 0.02) and imputation \(r^2 \) > 0.3 were included in the current analysis.

Statistical analyses

For each genotyped and imputed SNP, we evaluated its association with breast cancer risk using a logistic regression model with adjustment for age, study site, and principal components to correct for potential population stratification (the first six principal components, plus one additional principal component for the LMBC in analyses of the European ancestry data, or the first two principal components in the analyses of the Asian and African ancestry data), as previously described (1). ORs and 95% confidence intervals (CI) were estimated under a log-additive model.

We conducted separate analyses within European, Asian, and African American populations.

To identify independent association signals, we performed stepwise forward logistic regression analyses for the associated SNPs with an MAF > 0.02 showing association at \(P < 1 \times 10^{-4} \) in the single marker SNP analysis. We used the Step function implemented in the R package (25) with the penalty \(K = 10 \) for inclusion of additional SNPs in the model. Because no SNPs showed \(P < 1 \times 10^{-4} \) in the Asian or African populations, this analysis was performed only in the European population. The model was adjusted for the same factors as in the single SNP analysis. To define potentially causative variants, we computed a likelihood ratio for each SNP relative to the best associated SNP in each signal and excluded SNPs with a likelihood ratio < 1/100. Haplotype-specific ORs were estimated using haplo.stats in R, including age, study site, and the first six principal components, plus one additional principal component for the LMBC study.

Functional annotation

We annotated 29 candidate causative variants for potential functional significance using chromHMM annotation across nine ENCODE (26) cell lines: HMEC, GM12878, H1-hESC, K562, HepG2, HSMN, HUVEC, NHEK, and NHLF (27). For each variant, we investigated whether it is mapped to functional regions (i.e., promoter and enhancer) through chromatin states annotation from the UCSC Genome Browser (28). The epigenetic landscape of histone markers H3K4Me1, H3K4Me3, and H3K27Ac was also examined through layered histone tracks on seven ENCODE cell lines including GM12878, H1-hESC, K562, HSMN, HUVEC, NHEK, and NHLF from the UCSC Genome Browser.

Note: Supplementary data for this article are available at Cancer Epidemiology, Biomarkers & Prevention Online (http://cebp.aacrjournals.org/).

Corresponding Author: Wei Zheng, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN 37203. Phone: 615-936-0682; Fax: 615-936-8241; E-mail: wei.zheng@vanderbilt.edu
doi: 10.1158/1055-9965.EPI-15-0363

©2015 American Association for Cancer Research.
DNase I hypersensitive and TF ChIP-Seq datasets were investigated in all available ENCODE cell lines, including breast normal cell line, human mammary epithelial cell (HMEC), and breast cancer cell lines, T-47D and MCF-7. Two publicly available tools, RegulomeDB (29) and HaploReg v2 (30), were also used to evaluate those likely functional variants (9, 31). In addition, we also investigated whether each variant is overlapped with regulatory elements of enhancers and transcription start sites (TSS) from two previous studies including Hnisz and colleagues (32) and Andersson and colleagues (FANTOM5 project; ref. 33). Chromatin Interaction Analysis by Paired End Tag (ChIA-PET; mediated by RNA polymerase 2) data from MCF7 cell were downloaded from GEO (GSE39495), and the ggbio R package was used to represent the interactions between cell enhancers (containing a strongly associated variant) and a predicted gene promoter.

The Cancer Genome Atlas data resource and eQTL analysis

We downloaded RNA-Seq V2 data (level 3) of 1,006 breast cancer tumor tissues from The Cancer Genome Atlas (TCGA) data portal (34). DNA methylation data measured by the Illumina HumanMethylation450 BeadChip were also retrieved from TCGA level 3 data. We also downloaded level 3 SNP data genotyped using the Affymetrix SNP 6.0 array. Copy number alteration (CNA) data for genes PPA2, ARHGEF38, INTS12, GSTCD, and TET2 at 4q24 for TCGA samples were collected from the CbioPortal (35). We analyzed a total of 645 breast tumor tissues in Caucasian population including matched copy number variation, genotype, and expression data.

We performed eQTL analysis in TCGA tumor tissues described above. We applied several steps to reduce the batch or other technical effects on gene expressions following the approach described by Pickrell and colleagues (36). First, the RNA-Seq by expectation–maximization value of each gene was log2-transformed and those genes with a median expression level of 0 across tissues were removed. We then performed the principal component correction on gene expression to remove potential batch effects. A linear regression of expression values on the first five principal components was constructed and the residuals were used to replace the expression values of each gene among tissues. To make the data better conform to the linear model for the eQTL analysis, we further transformed the gene expression levels to fit quantiles of N(0,1) distribution on the basis of the ranks of the expression values to their respective quantiles. Residual linear regression models were constructed to detect eQTLs, while adjusting for methylation and CNA, according to the approach used by Li and colleagues (37).

We also extracted matched genotypes and gene expression levels as described above in a total of 135 tumor-adjacent normal tissue samples.
breast tissues in European ancestry individuals from the METABRIC project (38). Gene expression profiling was generated on the Illumina HT12 v3 microarray platform and probe-level measurements were used. Genotyping was performed on the Affymetrix SNP 6.0 with genotypes being imputed using the 1000 Genomes March 2012 CEU reference panel. Matrix eQTL was performed for evaluating the association between genotypes and gene expression levels (39).

Results

Association analyses

We evaluated associations for 490 genotyped and 3,422 well-imputed SNPs at 4q24 spanning 596 kb (positions in chr4: 105932103–106528262 from hg19) in 48,155 cases and 43,612 controls of European descent. A total of 29 variants were significantly associated with breast cancer risk at \(P < 1 \times 10^{-4} \) (Fig 1; Supplementary Table S1). Of these, 15 variants were directly genotyped and 14 were imputed with \(r^2 > 0.9 \). All risk-associated variants had MAF \(> 0.05 \). The index SNP, rs9790517, showed strong evidence of a significant association with breast cancer risk [OR, 1.05; 95% confidence interval (CI), 1.03–1.08; \(P = 5.44 \times 10^{-7} \), which was consistent with the report from the original study (1). The strongest association was, however, found for an imputed SNP rs77928427 (OR, 1.12; 95% CI, 1.07–1.17; \(P = 2.92 \times 10^{-7} \)).

To identify potential independent association signals, we carried out forward stepwise logistic regression analysis on SNPs associated with breast cancer at \(P < 1 \times 10^{-4} \). Two independent association signals were revealed: index SNP rs9790517 (conditional \(P = 2.51 \times 10^{-4} \), after adjustment for the SNP in the second signal) and SNP rs77928427 (conditional \(P = 1.86 \times 10^{-4} \) after adjusting for the index SNP; Table 1). The index SNP rs9790517 in signal 1 was in weak linkage disequilibrium (LD) with the SNP rs77928427 in the second risk signal (\(r^2 = 0.04 \)). These two SNPs are more than 300 kb apart from each other.

We performed similar analyses, restricting to cases with estrogen receptor–positive (ER+) cancer and identified 17 variants associated with ER+ breast cancer risk at \(P < 1 \times 10^{-4} \) in women of European ancestry. No SNP was found to be associated with ER-negative (ER-) disease at \(P < 1 \times 10^{-4} \). However, the per-allele ORs for the two SNPs independently associated with overall breast cancer risk were similar for ER- and ER+ disease (Table 1; all tests of heterogeneity by ER status: \(P > 0.10 \)). Conditional analysis yielded similar associations for ER+ breast cancer to those for overall breast cancer for the two independently associated SNPs.

We performed haplotype analysis on the basis of the top SNPs from the two signals: rs9790517 and rs77928427 in European descendants. Three major haplotypes were observed. Compared with the most common haplotype carrying the common allele at both SNPs, haplotype TA carrying two risk alleles showed the strongest association with breast cancer risk (OR, 1.11; 95% CI, 1.07–1.17; \(P = 2.92 \times 10^{-7} \); Table 2). The frequency of this haplotype was 9.4%. Haplotypes CA and TG, carrying the risk allele in either signal 1 or 2, also were associated with elevated risk of breast cancer, although the association was only marginally significant. Thus, the haplotype analyses were consistent with the hypothesis that there are two independently associated variants in the region.

We compared the average age among those cases carrying risk and non-risk alleles of rs9790517. Interestingly, we observed that the cases carrying risk alleles were slightly younger than those carrying non-risk alleles (average age: 57.54, 57.62, and 57.64, respectively, for patients carrying alleles TT, TC, and CC of rs9790517; \(P = 2 \times 10^{-16} \)). No such pattern was observed for rs77928427.
We carried out association analysis for all SNPs with breast cancer in subjects of Asian and African descent. None of the SNPs identified in women of European ancestry as associated at $P < 10^{-8}$ showed a significant association in either Asians or African women at $P < 0.05$ (Table 3). However, the 95% CI for the OR estimates in Asians and Africans included the point estimate in Europeans for both of the two top independent SNPs. We found one SNP associated with breast cancer risk in Asians and three in Africans, at $P < 0.01$ (strongest signal rs1116764: OR, 1.10; 95% CI, 1.04–1.16; $P = 4.21 \times 10^{-4}$), none of these SNPs were in LD with the two independent association signals identified in European women (Table 3).

Functional annotation

We used a likelihood ratio $> 1:100$ relative to the best associated SNP in each signal to select candidate variants for functional annotation to identify potentially causative variants in this region (Supplementary Table S1). In total, 29 SNPs were identified including 24 for signal 1 and 5 for signal 2. Of these, 17 SNPs in signal 1 were strongly correlated with the original index SNP rs9790517, and the remainder was more weakly correlated. All SNPs were evaluated using DNase-Seq and ChIP-Seq data from the ENCODE project. The most promising evidence for functionality was found for SNPs rs62331150 and rs73838678, both in LD with the index SNP rs9790517 in Asians and Africans, respectively. None of these SNPs were in LD with the two independent association signals identified in European women (Table 3).

Gene expression analyses

We used both TCGA and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data to examine the association of the putative functional SNP rs62331150 and rs73838678 with expression of $TET2$ and several other neighboring genes, including $PPA2$, $ARHGIF38$, $INTS12$, and $GSTD3$, in breast cancer tissues. No significant correlations with any genes were observed for variant rs73838678. Variant rs62331150 was weakly correlated with $TET2$ expression in both datasets ($P = 0.039$ and $P = 0.025$, respectively, for TCGA and METABRIC), the reference allele G being associated with increased expression relative to the risk allele T (Fig. 3).
The result was consistent with the observation from our functional annotation that SP1 may preferentially bind to the reference G allele, leading to a significant increase in TET2 transcription activation. No correlation between rs62331150 and the expression of any other gene in the region was found in either dataset. Overall, our findings supported a hypothesis that TET2 is the target gene for the signal 1 association and that the association with breast cancer risk may be mediated through regulation of TET2 gene expression. The result is also in line with previous findings that TET2 functions as a tumor suppressor and its high expression level may reduce breast cancer risk (44, 45).
of DNA base methylecytosine to 5-hydroxymethylcytosine and therefore, have a genome-wide scale of influence on gene expression (46–48). Accordingly, TET2 gene dysregulation could cause aberrant DNA methylation and consequently contribute to cancer development (3–6, 45, 49). Here, we reported TET2 as a candidate susceptibility gene for both ER– and ER+ breast cancer types. Although the associations for the top SNPs, rs97790517 and rs77928427, with breast cancer risk in Asian- and African-ancestry populations were not statistically significant, likely due to a small sample size, the direction of the associations was mostly consistent in all population, suggesting that the TET2 gene play a similar role in the etiology of breast cancer in all three populations.

Although our fine-mapping analysis represents the most comprehensive analysis of variants at 4q24 thus far, many SNPs, particularly rare variants, cannot be imputed. Deep sequencing of this region may reveal additional risk variants for breast cancer. For example, rs76682196, located 884 bp upstream of rs62331150, was found to be potentially functional using the ENCODE data. The variant is present in DHS and TF sites. In particular, it lies in the EBox-predicted binding motif and ChIP-Seq peak in breast cancer cell line T-47D. However, this variant was not included in the study due to its low frequency (MAF < 0.01) in populations from all three ethnic groups.

In conclusion, this dense fine-mapping study identified two independent association signals with breast cancer risk at 4q24, increasing the estimated familial relative risk of breast cancer explained by this locus from the original 0.07% to 0.15% among women of European descent. Functional analyses revealed one potentially functional variant, rs62331150. The risk allele is associated with lower expression of TET2, consistent with previous findings that this gene acts as a tumor suppressor.

Disclosure of Potential Conflicts of Interest

P.A. Fasching reports receiving commercial research grants from Amgen and Novartis, has received speakers bureau honoraria from Amgen, Celgene, GSK, Novartis, Pfizer, Roche, and Teva. No potential conflicts of interest were disclosed by the other authors.

Disclaimer

The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR.

Authors’ Contributions

Analysis and interpretation of data (e.g., statistical analysis, biostatistical consult): M.J. Shrubsole, C.-Y. Shen, A.M. Dunning, D.F. Easton

Acknowledgments: We thank all the BCFR participants and their families, who generously contributed their time and effort into this research. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR.

Published OnlineFirst September 9, 2015; DOI: 10.1158/1055-9965.EPI-15-0363
Acknowledgments

The authors thank all the individuals who took part in these studies and all the researchers, study staff, clinicians, and other healthcare providers, technicians, and administrative staff who have enabled this work to be carried out. In particular, they thank Andrew Berchuck (OCAC), Rosalind A. Eles, Ali Amin Al Omara, Zofia Kote-Jarai, Sara Benlloch (PRACTICAL), Antonis Antoniou, Lesley McGilloway, Ken Offit (CIBRA), Andrew Lee, and Ed Dicks. Craig Luccharini and the staff of the Centre for Genetic Epidemiology Laboratory, Daniel C. Tesser, Francois Bacot, Daniel Vincent, Sylvain LaBrecque, François Pessin, and the staff of the McGill University and Genome Quebec Innovation Centre, Suné F. Nielsen and the staff of the Copenhagen DNA laboratory, Julie M. Cunningham, Sharon A. Windebank, Christopher A. Hiller, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility, Maggie Angelakos, Judi Maskell, Ellen van der Schoot (Sanquin Research), Emeil Rutgers, Senno Verhoef, Frans Hogervorst, the Thai Ministry of Public Health (MOPH), Dr. Prit Boonyawongworot (former Permanent Secretary of MOPH), Dr. Pornpimol Sirivanaranang (Department Director-General of Disease Control), Michael Schrauder, Matthias Rübner, Sonja Oeser, Silke Landrith, Eileen Williams, Elaine Ryder-Mills, Kara Sargas, Niall McNerney, Gabrielle Colleran, Andrew Rowan, Angela Jones, Christof Sohn, Andreas Scheuweiler, Peter Bugert, the Danish Breast Cancer Group, Núria Álvarez, the CTIS Steering Committee (including Leslie Bernstein, James Lacey, Sophia Wang, Huiyan Ma, Yani Lu and Jessica Clague Delfai at the Beckman Research Institute of the City of Hope; Dennis Deapen, Richard Pinder, Eunjung Lee and Fred Schumacher at the University of Southern California, Pam Horn-Ross, Peggy Reynolds and David Nelson at the Cancer Prevention Institute of California; and Hannah Park at the University of Irvine, California), Hartwig Ziegler, Sonja Wolf, Volker Hermann, The GENICA network [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Germany; (HB, Wings Eye Lo, Christian Baisch), the German Cancer Consortium (DKTK) and the German Cancer Research Center (DKFZ)] [HB] Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany (Von-Dschum Ko, Christian Baisch], Institute of Pathology, University of Bonn, Germany (Hans-Peter Fischer], Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ)] Heidelberg, Germany (The Hamann), Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany (TB, Beate Pesch, Sylvia Rabstein, Anne Lotz), Institute of Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Germany (Rahel Martin), Tuomas Finnila, Krisianari Aaltonen, Karl von Smitten, Natalia Antonenkova, Peter Hillenmann, Hans Christiansen, Elja Myöhänen, Helena Kemiläinen, Heather Thorne, Evelinde Niedermayr, the AOCs Management Group [D Bowtell, G Chenex-Trench, A defazio, D Gertig, A Green, P Webb], the ACS Management Group [A Green, P. Parsons, N. Hayward, P. Webb, D. Whiteman], the LAABs data collection team, especially Annie Fung and June Yashiki, Gillian Peuteman, Dominic Smieek, Thomas Van Brunssel, Kathrin Korte, Nadia Obi, Judith Heinz, Sabine Behrens, Ursula Eilber, Muhabbat Celik, Til Ochles, Siranoush Manoukian, Bernard Peisel, Giulietta Suverna, Daniela Zaffaroni, Bernardo Bonanni, Irene Feroce, Angela Maniscalo, Alessandra Rossi, Loris Bernard, the personnel of the Cogentech Cancer Genetic Test Laboratory, The Mayo Clinic Breast Cancer Patient Registry, Martine Tranchant, Marie-France Valois, Annie Turgeon, Lea Heguy, Phuah Sze Yee, Peter Kang, Kang In Ne, Shivaani Maturap, Yoon Sook-Yee, Daphne Lee, Tey Yew Ching, Nur Aishah Mohd Taib, Meeri Otsukka, Kari Mononen, Teresa Selander, Nayana Weerasingh, OBCG, E. Krol-Warmerdam, J. Molenaar, J. Blom, Louise Brinton, Neoniila Szeszenia-Dabrowska, Beata Ploplinska, Witold Zatonski, Pei Chao, Michael Stagner, Petra Bos, Janett Bloom, Ellen Arndt, Anja Niewa, Annette Heemskerk, the Erasmus MC Family Cancer Clinic, Sue Higham, Simon Cross, Helen Czmp, Dan Conolly, Sabapathy Balasubramahian, Ian Broek, The Eastern Cancer Registration and Information Centre, the SEARCH and EPIC teams, Michael Kerin, Nicola Miller, Niall McNerney, Gabrielle Colleran (BIGCS), Pierre Kerbrat, Patrick Arveux, Romuald Le Scodan, Yves Raoul, Pierre Laurent-Puig, Claire Mulet (CCEIL), Christa Stegmaier and Katja Butterbach (ESTHER), Natalia Antonenkova, Peter Hillenmann, Hans Christiansen and Johann H. Karstens (HMBCS), Gillian Peuteman, Dominiek Smieek, Thomas Van Brunssel and Kathrin Korte (LMBC), Dieter Flesch-Janys, Petra Seibold, Judith Heinz, Nadia Obi, Alina Vrieling, Sabine Behrens, Ursula Eilber, Muhabbat Celik, Til Ochles and Stefan Nickels (MARIE). We wish to thank Paolo Radice, Bernard Peisel, and Daniela Zaffaroni of the Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Bernardo Bonanni, Monica Barile and Irene Feroce of the Istituto Europeo di Oncologia (IEO) and Loris Bernard and the personnel of the Cogentech Cancer Genetic Test Laboratory, Vanderbilt Epidemiology Center is supported by the National Cancer Institute Cancer Center Support Grant (P30 CA068485). The work conducted for this project at Vanderbilt Epidemiology Center is supported in part by NIH grant R01CA156473 and endowment funds for the Ingram Professorship and Anne Potter Wilson Chair. BCAC is funded by Cancer Research UK [C1287/10118, C1287/10124] and by the European Community's Seventh Framework Programme under grant agreement no 23175 (HEALTH-F2-2009-23175. COGS). Meetings of the BCAC have been funded by the European Union COST programme [BM0606], GenetikPylka, Asia Jukkola-Vuorinen, Saia Kauppila, Kari Mononen, and Meeri Otsukka for data collection and sample preparation. Craig Luccharini, Don Conroy, Caroline Baynes, Kimberley Chua, the Ohio State University Human Genetics Sample Bank and Robert Pilarski. Data on SCCS cancer cases used in this publication were provided by the: Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY, Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry, South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry, Arkansas Department of Health, Cancer Registry.

Grant Support

The work conducted for this project at Vanderbilt Epidemiology Center is supported in part by NIH grant R01CA156473 and endowment funds for the Ingram Professorship and Anne Potter Wilson Chair. BCAC is funded by Cancer Research UK [C1287/10118, C1287/10124] and by the European Community's Seventh Framework Programme under grant agreement no 23175 (HEALTH-F2-2009-23175. COGS). Meetings of the BCAC have been funded by the European Union COST programme [BM0606], GenetikPylka, Asia Jukkola-Vuorinen, Saia Kauppila, Kari Mononen, and Meeri Otsukka for data collection and sample preparation. Craig Luccharini, Don Conroy, Caroline Baynes, Kimberley Chua, the Ohio State University Human Genetics Sample Bank and Robert Pilarski. Data on SCCS cancer cases used in this publication were provided by the: Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY, Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry, South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry, Arkansas Department of Health, Cancer Registry.
financed by the Swedish Cancer Society (5128-B07-01P-AF). The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA07867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA64856. The SBCS was supported by Yorkshire Cancer Research S305PA, S299 and S295, and the Sheffield Experimental Cancer Medicine Centre. Funding for the SCCS was provided by NIH grant R01 CA092344. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry, which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by a programme grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the BRL (Basic Research Laboratory) program through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology (2012-000347). SGBCC is funded by the NUS start-up Grant, NCIS Centre Grant, and NHRM Clinician Scientist Award. Additional control sets were recruited by the Singapore Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC), which was funded by the Biomedical Research Council, grant number: 05/12/11/19/425. SKKDFXSF is supported by the DKEZ. The SBCGS was supported by Grant PBZ_ KBN_122/PO05/2004. K.I is a fellow of International PhD program, Postgraduate School of Molecular Medicine, Warsaw Medical University, supported by the Polish Foundation of Science. The TNBCC was supported by the NIH grant (CA128976), the Breast Cancer Research Foundation, Komen Foundation for the Cure, the Ohio State University Comprehensive Cancer Center, the Stephanie Spielman Fund for Breast Cancer Research, and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. Part of the TNBCC (DEMONKRITOS) has been co-financed by the European Union (European Social Fund–ESF) and Greek National Funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA. The TWBCS is supported by the Institute of Biomedical Sciences, Academia Sinica and the National Science Council, Taiwan. The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre.

Received April 9, 2015; revised July 14, 2015; accepted July 20, 2015; published online September 9, 2015.

References

28. UCSC Genome Browser [Internet]. Santa Cruz (CA): genome bioinformatics group, center for biomolecular science and engineering at the University of California Santa Cruz. [cited 2015 Sept. 21]. Available from: http://genome.ucsc.edu.
Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk

Cancer Epidemiol Biomarkers Prev Published OnlineFirst September 9, 2015.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/1055-9965.EPI-15-0363</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Access the most recent supplemental material at: http://cebp.aacrjournals.org/content/suppl/2015/09/09/1055-9965.EPI-15-0363.DC1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>