Manuscript Title: Personal Navigation Increases Colorectal Cancer Screening Uptake

Running Head: Personal Navigation in Colorectal Cancer Screening

Word Count Manuscript Text - 3382 words

Authors:

Paul G. Ritvo, Ph.D., School of Kinesiology and Health Science, York University and Research, Prevention and Cancer Control, Cancer Care Ontario

Ronald E. Myers, Ph.D., Kimmel Cancer Center, Division of Population Science, Department of Medical Oncology, Thomas Jefferson Medical College, Thomas Jefferson University

Lawrence F. Paszat, M.D., FRCPC, Institute for Clinical Evaluative Sciences, Toronto-Sunnybrook Regional Cancer Centre, Sunnybrook Health Sciences Centre, Radiation Oncology, University of Toronto

Jill M. Tinmouth, M.D., Ph.D., Institute for Clinical Evaluative Sciences, Sunnybrook Health Sciences Centre, Institute of Health Policy, Management and Evaluation, Department of Medicine, University of Toronto

Brian Mitchell, M.D., FRCSC, Group Health Centre, Sault Ste. Marie, Ontario

Mardie Serenity, M.HSc., Sunnybrook Health Sciences Centre, Sault Ste. Marie, Ontario

Linda Rabeneck, M.D., M.P.H., FRCPC, Prevention and Cancer Control, Cancer Care Ontario, Institute for Clinical Evaluative Sciences, Department of Medicine, University of Toronto

Corresponding Author: Paul Ritvo, Ph.D., c/o School of Kinesiology and Health Science, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3 (416-971-9800 x3203)

Authors contributions:

Paul G. Ritvo, Ph.D.: Conception and design; acquisition of data; analysis and interpretation of data; drafting of the manuscript; critical revision of the manuscript; obtaining funding; administrative support; supervision

Ronald E. Myers, Ph.D.: Conception and design; analysis and interpretation of data; drafting of the manuscript; critical revision of the manuscript; obtaining funding

Lawrence F. Paszat, M.D. FRCPC.: Conception and design; analysis and interpretation of data; drafting of the manuscript; critical revision of the manuscript; obtaining funding

Jill M. Tinmouth, M.D., Ph.D.: Analysis and interpretation of data; drafting of the manuscript; critical revision of the manuscript
Joshua McColeman, M.Sc.: Analysis and interpretation of data

Brian Mitchell, M.D. FRCSC: Conception and design; analysis and interpretation of data; critical revision of the manuscript; administrative support

Mardie Serenity, M.A.: Drafting of the manuscript; critical revision of the manuscript; administrative support

Linda Rabeneck, M.D. FRCPC: Conception and design; acquisition of data; analysis and interpretation of data; drafting of the manuscript; critical revision of the manuscript; obtaining funding; administrative support; supervision

Conflicts of Interest:
Paul G. Ritvo, Ph.D.: None to report
Ronald E. Myers, Ph.D.: None to report
Lawrence F. Paszat, M.D., FRCPC: None to report
Jill M. Tinmouth, M.D., Ph.D.: None to report
Joshua McColeman, M.Sc.: None to report
Brian Mitchell, M.D., FRCSC: None to report
Mardie Serenity, M.HSc: None to report
Linda Rabeneck, M.D. FRCPC: None to report

This project was funded by a grant from the Canadian Institutes of Health Research in Population-Based Colorectal Cancer Screening, Linda Rabeneck, M.D., Principal Investigator
Background: Prior randomized, controlled trials (RCTs) indicate patient navigation can boost colorectal cancer (CRC) screening in primary care. The sparse literature on pragmatic trials of interventions designed to increase CRC screening adherence motivated this trial on the impact of a patient navigation intervention that included support for performance of the participants’ preferred screening test (colonoscopy or stool blood testing).

Materials and Methods: Primary-care patients ($n = 5240$), 50-74 years of age, with no prior diagnosis of bowel cancer, and no record of a recent CRC screening test were identified at the Group Health Centre in northern Ontario. These patients were randomly assigned to an Intervention Group (N = 2629) or a usual care Control Group (N = 2611). Intervention Group participants were contacted by a trained nurse navigator by telephone to discuss CRC screening. Interested patients met with the navigator, who helped them identify and arrange for performance of the preferred screening test. Multivariate analyses were conducted using medical records data to assess intervention impact on screening adherence within 12 months after randomization.

Results: Mean patient age was 59 years, and 50% of participants were women. CRC screening adherence was higher in the Intervention Group (35%) compared to the Control Group (20%), a difference that was statistically significant (OR = 2.11, CI: 1.87 – 2.39).

Conclusion: Preference-based patient navigation increased screening uptake in a pragmatic RCT.

Impact: Patient navigation increased CRC screening rates in a pragmatic RCT in proportions similar to those observed in explanatory RCTs.

Trial Registry: NCT01506687
Introduction

To increase colorectal cancer screening (CRC) screening uptake, and the uptake of other prevention and screening behaviors, multiple strategies have been adapted, trialed and adopted. In CRC screening projects, mailed contacts (with or without included screening kits), office contacts, and combined telephone-office contacts have increased uptake (1-4), with literature reviews indicating increased CRC screening rates (5-8) via mailings (e.g. printed materials, mailed stool blood tests (SBTs), reminder mailings) while recently-reported randomized controlled trials (RCTs) show personal contacts and mailings, significantly increase rates in underserved patients (1-4). Accordingly, personalized patient contacts (i.e. navigation) appears a promising strategy. While navigators have traditionally assisted patients with complex diagnostic-treatment processes (9-13), health educators now navigate patients through preventive health behaviors (14). In CRC screening, when a patient navigator has telephoned patients and encouraged screening, increases of 27% to 41% in screening rates have been observed (15-18) with higher rates also reported with the navigation of patients recruited during primary care office visits (1).

In this pragmatic RCT, using minimal inclusion-exclusion criteria, we employed primary care outreach to arrange nurse navigation to increase CRC screening uptake, in direct comparison with opportunistic screening supplemented by a provincially organized screening program (ColonCancerCheck). Existing provincial data that reflected a ~ 30% CRC mean screening prevalence (19) motivated the key study question: how much of an increase in screening rates could be accomplished with a personal navigation intervention? We hypothesized that navigation would be similarly effective in a pragmatic RCT in Canada, as it had been in explanatory RCTs in the US, significantly boosting rates above those achieved by the provincially-based, organized screening program (usual care).

Materials and Methods
Study design and participants

The study was a RCT that included primary care providers (PCPs) in 21 practices affiliated with the Group Health Centre (GHC) who share a common electronic medical record (EMR) system in Sault Ste. Marie, Ontario. Following protocol approval by the GHC institutional review board, the research team identified potential study participants (through EMR searches) who were 50 to 74 years, had no prior or current diagnosis of bowel cancer, and were unscreened (no prior CRC screening) or under-screened (no FOBT within the preceding two years and no colonoscopy or barium enema or flexible sigmoidoscopy within the preceding five years).

Potentially eligible patients were randomized using a random number generator applied to each participating primary care practice (following exclusions), either to an intervention group or a usual care control group, within each participating PCP practice. Eligible intervention subjects were mailed an introductory screening letter signed by their primary care provider (PCP), inviting them to book an appointment with a staff nurse navigator to discuss CRC screening. Invitation letters were based on focus group findings (19) indicating patient interests in brief correspondence, fact sheets and brochures (developed by the ColonCancerCheck Program) in identifiable (GHC logo) envelopes. Eligible intervention subjects were also telephoned by a research assistant, up to three times to make contact, verify eligibility and obtain study (verbal) consent. Patients who consented were immediately scheduled by the research assistant for in-person or telephone appointments to talk about CRC screening with a staff nurse navigator. Patients who attended the in-person navigator session provided written consent at the appointment, while patients who opted for telephone-navigation were consented via return-mail.

All participating patients were permanent residents of the province and eligible for the Ontario Health Insurance Plan (OHIP) which, through the Ministry of Health and Long-Term Care, pays for necessary medical services (20) that include colorectal cancer screening (for average-risk adults 50 years and older) using the Fecal Occult Blood Test (FOBT) every two years. Those assessed at
increased risk (i.e. with a first degree family member with colorectal cancer) can access colonoscopy beginning at age 50, or, alternatively, 10 years earlier than the affected relative’s age of diagnosis, whichever comes first (21). Key demographics for the Algoma District, where all participants lived, included: median age of 45 years, median income of $60,494, 34% possessing a college/university certificate/diploma and 66% with a trades or high school graduation certificate or less (22).

Tailored Navigation intervention

Each Tailored Navigation Intervention (TNI) session involved: a) provision of general information regarding CRC screening, b) review of Stool Blood Test and colonoscopy screening that included neoplasia detection rates and associated procedure risks, and c) elicitation of the participant’s preferred screening test. Test preference elicitation followed methods developed by Myers et al. (2) based on the Precaution Adoption Process Model, operationalized in items assessing perceived susceptibility, screening salience-coherence, screening response efficacy, screening worries-concerns and screening social support-influence. In our study the patient-subject and navigator exercised options to deploy items verbally (at navigation sessions) or to review previously completed surveys. The staging per modality (Stool Blood Test, colonoscopy) was fed back to the patient who reflected on how much results reflected self-observed preferences. Exchanges thus combined the benefits of item-by-item survey completion and person-to-person discussion. A Stool Blood Test kit was given directly to patients who opted for this test (during an in-person navigation appointment, or when a phone navigation appointment was undertaken, via mail). If colonoscopy were preferred, the navigator placed a referral for colonoscopy screening in the EMR under the patient’s Primary Care Provider (PCP) name and provider number. Coordination between affiliated endoscopists and the patient’s PCP permitted scheduling of consults during the patient’s navigation appointment. As the patient’s PCP was responsible for
tracking CX procedure performance via the EMR, the navigator did not follow up on patient compliance with the appointment, nor did the navigator facilitate rescheduling, if it was necessary. To summarize, the nurse navigator in this study: 1) elicited participant screening test preference (colonoscopy (CX) or stool blood testing (SBT)), 2) provided a SBT when preferred, and 3) directly scheduled a colonoscopist consultation, when CX was the preference.

Data collection

A GHC Clinical Research Informatics Specialist (JM) managed data collection, with participant information collected from the EMR and compiled in the GHC study data system, a long-standing, comprehensive electronic system that registers and stores all medical transactions from GHC-affiliated PCPs and specialist physicians. The data system contained information on both intervention and control participants, and allowed EMR access to patient data.

Study endpoints and analyses

The study's primary endpoint was CRC screening uptake within 12 months (48 weeks) after the initial mailing of the invitation letter. Screening uptake was defined as performance of either Stool Blood Test (SBT) or colonoscopy (CX) during this interval. Both intention-to-treat and per-protocol analyses were undertaken (the latter solely with patients who scheduled nurse-navigator contacts by phone or in-person). Subjects were analyzed in the group to which they were randomized, regardless of contacts with health care providers. Control subjects were analyzed for CRC screening activity during the equivalent 48 weeks, based on the initial mailing date of the invitation letters sent to experimental subjects.

Data Analyses
Prospective analyses of screening uptake were based on a logistic random effects model, with a categorical explanatory variable for the intervention group and the subject's gender, and a non-parametric term for subject age. A random effects term at the practice level was included to allow for the possibility that baseline screening rates were higher in some primary care practices. The model was fit using Bayesian inference with uninformative prior distributions. Secondary analyses included an as treated (per protocol) analysis of comparisons of screening and modality (SBT vs. CX), and additional analyses focusing on screening rates per age- and sex-related subgroups. Original power estimates for a predicted difference of 15% or greater between experimental and control groups, was 99.8% with experimental and control groups consisting of 400 subjects or more; however, the pragmatic emphasis in this trial resulted in sample sizes that were >6 times those samples, resulting in power estimates approaching 99%.

Results

Participant Enrollment and Randomization

There were 18,434 GHC patients identified as potentially study eligible. Of this number, 13,194 were excluded because they were up-to-date with screening (N = 10,058) or were found to be associated with a primary care provider who had not volunteered to participate in the study (N = 3,136) (see Figure 1).

Figure 1 Goes Here

Altogether, 5240 patients were randomized such that 2629 were sent invitation letters and were called by the study research assistant, while 2611 were randomly assigned to a control group and received no letter or call. During the course of the study, the control group was not aware of participation, and participating primary care physicians were not informed as to which patients were randomized to intervention vs. control groups. EMR data show that among eligible subjects, mean age was 59.4 years, and 50% of subjects were women. No additional demographic data, other
than gender and age, were available in the EMR; there were no statistically significant differences in age and gender between the 2 study groups (see Table 1).

Table 1 Goes Here

Of the 2629 intervention group subjects, 1,026 could not be reached (39%), while 1603 were screened by the research assistant (61%). Of those patients reached, 821 were consented (821/1603 or 51.2%) and scheduled an appointment but 699 (699/1603 or 43.6%) did not participate because, on further scrutiny, they were deemed ineligible (N = 317) (317/1603 or 19.7%), or indicated inabilities to undergo screening due to poor health (N = 56) (56/1603 or 3.2%) because they declined screening participation altogether (N = 326) (326/1603 or 20.3%). Of those subjects who scheduled a nurse navigator appointment, 738 attended the appointment (while 83 did not present for the appointment in person or at the time of the appointed call). Among those who spoke with the nurse navigator, N = 735 (99.5%) subjects had an in-person encounter and N = 3 (0.5%) subjects had a telephone encounter.

Screening Uptake

In the intervention group, 923 individuals were screened within 12 months (35% of all intervention subjects) compared to 533 control subjects (20% of all control subjects) (see Table 2). The odds ratio for uptake of screening in the intervention group, when compared to the control group, was 2.11, (95% C.I. 1.87 to 2.39, p< 0.001). Amongst subjects in the intervention group who underwent screening, 17.4% underwent CX and 17.7% completed an SBT; while among screenees in the control group, 8.2% underwent CX and 12.2% completed an SBT.

Table 2 Goes Here

When patients met with the personal navigator (per protocol), 67% completed screening (see Table 3). The odds ratio for screening uptake in the per protocol arm, when compared to the
control arm, was 7.80 (95% C.I. 6.56 to 9.28, \(p < 0.0001 \)). In contrast, only 21% of the patients randomized to the intervention who did not meet with the navigator completed screening.

As seen in Table 4, a greater percentage of male intervention subjects were newly screened than females (52.1% of new screeners were males vs. 47.9% females) and there were 6.4% more newly screened males than females screened with colonoscopy (28.0% males vs. 21.6% females) while 2.2% more newly screened females obtained FOBT than males (26.3% females vs. 24.1% males). In terms of age, a greater proportion of subjects between 50 – 60 years were newly screened (59.9%) than between 61 - 74 years (40.1%) and amongst the newly screened 50 – 60 year old group, more received colonoscopy screening (31.8%) than FOBT (28.1%). This pattern was reversed in subjects 61-74 years where more newly screened subjects had FOBT than colonoscopy (22.4% vs. 17.7%).

Discussion

In this pragmatic RCT, a research assistant contacted and consented primary care attending patients and scheduled consenting participants for in-person or telephone appointments with a staff nurse navigator. The navigation method was associated with substantive, statistically significant increases in CRC screening uptake over usual care, reflected in intention-to-treat and per protocol analyses. The intervention impact was comparable to reports from other RCTs (in the US) designed as explanatory trials (1,2,3,4) while it tested a navigation intervention with unique features within a pragmatic trial. Participants in the other RCTs (1-4) satisfied multiple eligibility criteria whereas our sole criteria were purposefully minimized: age, CRC screening history, and
bowel cancer diagnosis. Furthermore, the control participants and intervention participants who did not accept the navigation intervention were still assessed without direct consent. Thus, intervention impact findings are based on the inclusion of participants who represent the general population of primary care patients eligible for CRC screening, and reflected methods applicable in the routine practice implemented at the research site.

In contrast, in trials that were more explanatory in orientation (considering the pragmatic-to-explanatory continuum)[23], Green et al. excluded patients in active treatment for any cancer illness, inflammatory bowel disease or serious chronic or life-threatening disease (3), while Myers et al. excluded for inflammatory bowel disease and required at least 1 family practice visit in the prior two years (2). Inadomi et al. excluded for inflammatory bowel disease (1) and Gupta et al. excluded for inflammatory bowel disease and absence of a health care visit within the 8-months period preceding randomization (4).

Navigation interventions have variously employed telephone contact with the patient population, or referral of patients by primary care physicians to meet with navigators at the time of routine office visits (1-4). While the current study is aligned with RCTs where a navigator attempted to contact primary care patients (outside routine visits), our navigation approach accommodated face-to-face or telephone contacts. During the intervention encounter, the navigator helped participants clarify and implement their CRC screening test preference. For patients preferring CX screening, the navigator acted on behalf of the primary care physician and endoscopist, uniting these relationships in scheduling screening appointments.

In noting specific comparison studies (1-4) in current CRC screening literature, our study largely follows strategic deployments of contacts with patients outside of physician visits (2,3,4). Myers et al. (2), Green et al. (3), and Gupta et al. (4) all used such contacts, although they were coordinated differently with mailings and/or automated phone messages. Myers et al. (2) provided personal phone-based navigation to establish screening preference (SBT/CX) and then mailed SBT
kits or endoscopy instructions (depending on preference), while Green et al. (3) combined mailed endoscopy instructions and SBT kit provision, with and without direct phone navigation. Gupta et al. (4) combined mailed invitations with automated phone messages in two comparison arms, one promoting a mailed Fecal Immunochemical Test (FIT-SBT arm) and the other colonoscopy. Live, personally navigated telephone reminders were additionally used by Gupta et al. (4) for patients who failed to complete screening within 3 weeks of invitation, at which time a phone-navigated triage assessed whether patients (in the CX arm) could follow through (with navigation assistance) or required a pre-colonoscopy clinic visit (with provision of bowel preparation materials) followed by reminders and instruction reviews prior to scheduled appointments.

While direct comparisons of the screening rates achieved with varying approaches is unwise (given significant differences in the assessed samples), the highest screening rates attained (above usual care control rates) are notable (e.g. 35.4% for Green et al., 25% for Myers et al., and 28.6% for SBT screening for Gupta et al.) and comparable to those obtained in our per protocol sample (47% above usual care control rates). It is noteworthy that larger screening rate increases were found with SBT compared to colonoscopy screening in each of these comparison trials: Myers et al. (2) found greater intervention effects in participants who preferred SBT screening and weaker effects in those preferring colonoscopy ($p = .099$) for the interaction between group and screening test preference and in the respective screening rates after 6 months, (42% for SBT and 22% for CX). Green et al. (3) attributed generic increases in screening primarily to increased uptake of SBT (71%) vs. Cx (26%) after 24 months. Gupta (4), in equivalent arms defined by the promoted test (after 12 months), found an increase to 41% for SBT (Fecal Immunochemical Test) and 25% for colonoscopy. In contrast to the above, the proportions of intervention subjects screened with SBT or colonoscopy in our study were nearly equal (Table 4). Perhaps the apparent success in promoting colonoscopy was related to scheduling the colonoscopy appointment while the patient
was being navigated, enabling the patient to leave the navigation session with a decisive screening step accomplished.

While our study largely resembled other extra-office navigation trials (2-4), there were similarities to the in-office navigations (undertaken by primary care physicians) trialed by Inadomi et al. (1). While subjects solely interacted with a physician in the Inadomi study, our subjects preferred clinic-based interactions with the navigator (only 0.5% of navigated subjects scheduled telephone-based appointments) who acted on behalf of the primary care physician in scheduling colonoscopy appointments and immediately distributing SBT kits. As in the other studies reviewed, Inadomi et al. found higher screening rates in their SBT arm (67%) vs. the colonoscopy arm (38%), while our rates were about equal in both modalities (1).

Ontario has a province-wide organized CRC screening program, ColonCancerCheck which pre-exposed subjects to screening promotions (invitation mailing and television promotion). Thus our subjects were part of a population sector who remained unscreened per provincial guidelines. In this regard, our study resembles the Green et al. study (3), where all subjects were pre-exposed to system-wide mailed screening invitations. Whether pre-exposures in both studies had priming effects, or oppositely de-sensitized subjects to additional screening promotions, remains unclear.

Despite the apparent effectiveness of our combined approach, important questions remain about the uptake achieved with direct navigation when compared with mailed interventions introducing multiple screening options. When Myers et al. compared a preference-based intervention to a mailed intervention, where subjects solely received multiple options and no navigation towards preference, the subjects randomized to the preference-based TNI had higher rates than no-intervention controls (TNI: 38%, Control: 12%) but the multiple-options group demonstrated a screening rate only 5% lower (38% vs. 33%) (2). Subsequent analyses evaluated
the independent effects of the multiple option mailing vs. the telephone navigation for Stool Blood Test, with the multiple option mailing associated with increased screening (OR = 2.6, p = 0.001) due to a 29-fold increase in SBT, while telephone navigation was associated with increased screening (OR = 2.1, p = 0.005) due to a 3-fold increase in CX. It may be that a multiple option mailing is most effective with SBT promotion while telephone navigation may be especially useful with CX (24). In our study, with nearly equal populations of males-females in the sample, we again contrasted the proportions of newly screened subjects who were SBT-screened females vs. SBT-screened males and CX-screened females vs. CX-screened males (Table 4). A greater percentage of male intervention subjects were newly screened than females; and there were 6.4% more newly screened males than females who screened with colonoscopy and 2.2% more newly screened females who obtained FOBT than males. In terms of age, a greater proportion of subjects between 50 – 60 years were newly screened than between 61 - 74 years and amongst the newly screened 50 – 60 year old group, more were screened with colonoscopy than FOBT. This pattern was reversed in subjects 61-74 years where more newly screened subjects had FOBT than colonoscopy.

Altogether, results suggest the intervention was more effective with males than females and that more males than females opted for colonoscopy. Since when our patients met with the nurse-navigator, a high percentage (67%) completed screening, future studies should focus on efforts to increase the number of patients who attend phone-based navigator appointments and in-office appointments. As individuals become more internet-accessible, attempts to persuade attendance at phone-based or in-person navigations could feature videos describing and approximating navigation-sessions. These videos could be programmed interactively, permitting individuals to formulate questions that trigger video-based or personally navigated information. These preparations could prepare more subjects for ‘live’ sessions, whether phone-based or in-person. It would also be possible to combine in-person or phone-based navigation with opportunistic efforts to promote screening by primary care physicians. This would entail more cooperation from
participating physicians than what was required in the current study but might strategically incorporate their persuasion efforts.

In conclusion, it appears direct personal-navigation, immediately linked to referral for CX or SBT kit provision in a pragmatic RCT, had a significant effect on increasing screening uptake when compared with usual care. Immediate action on options (e.g. colonoscopy consultation) derived during direct navigation may warrant further investigation in efforts to increase colorectal cancer screening rates and the adoptions of other prevention behaviors.
References:

Table 1. Demographic Data on Sample

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Age</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized to Intervention</td>
<td>2629</td>
<td>58.7</td>
<td>1311</td>
<td>1318</td>
</tr>
<tr>
<td>Randomized to Control</td>
<td>2611</td>
<td>58.6</td>
<td>1328</td>
<td>1283</td>
</tr>
</tbody>
</table>
Table 2. Screening rates within 12 months – Intention-to-Treat Analysis

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Pct.</th>
<th>CX or SBT</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized to Intervention</td>
<td>2629</td>
<td>35.1%</td>
<td>923</td>
<td>2.11 (1.87 – 2.39)</td>
</tr>
<tr>
<td>Randomized to Control</td>
<td>2611</td>
<td>20.4%</td>
<td>533</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Screening rates within 12 months – Per Protocol Analysis

<table>
<thead>
<tr>
<th>Randomized to and Received Intervention (Per Protocol)</th>
<th>Total</th>
<th>Pct.</th>
<th>CX or SBT</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized to Control</td>
<td>2611</td>
<td>20.4%</td>
<td>533</td>
<td></td>
</tr>
<tr>
<td>Randomized to and Received Intervention (Per Protocol)</td>
<td>821</td>
<td>67%</td>
<td>547</td>
<td>7.80 (6.56 – 9.28)</td>
</tr>
</tbody>
</table>
Table 4. Screening rates within 12 months – Per Screening Modality, Gender and Age

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>All Males</th>
<th>All Females</th>
<th>50-60 yrs</th>
<th>61 & above</th>
<th>M 50 - 60 yrs</th>
<th>F 50 - 60 yrs</th>
<th>M 61 & above</th>
<th>F 61 & above</th>
</tr>
</thead>
<tbody>
<tr>
<td>Either method</td>
<td>923</td>
<td>481</td>
<td>442</td>
<td>553</td>
<td>370</td>
<td>271</td>
<td>282</td>
<td>210</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(52.1%)</td>
<td>(47.9%)</td>
<td>(59.9%)</td>
<td>(40.1%)</td>
<td>(29.3%)</td>
<td>(30.6%)</td>
<td>(22.8%)</td>
<td>(17.3%)</td>
</tr>
<tr>
<td>Both FOBT and Colonoscopy</td>
<td>52</td>
<td>28</td>
<td>24</td>
<td>29</td>
<td>23</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>FOBT</td>
<td>466</td>
<td>223</td>
<td>243</td>
<td>259</td>
<td>207</td>
<td>110</td>
<td>149</td>
<td>113</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>(50.5%)</td>
<td>(24.1%)</td>
<td>(26.3%)</td>
<td>(28.1%)</td>
<td>(22.4%)</td>
<td>(11.9%)</td>
<td>(16.1%)</td>
<td>(12.2%)</td>
<td>(10.2%)</td>
</tr>
<tr>
<td>Colonoscopy</td>
<td>457</td>
<td>258</td>
<td>199</td>
<td>294</td>
<td>163</td>
<td>161</td>
<td>133</td>
<td>97</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>(49.5%)</td>
<td>(28.0%)</td>
<td>(21.6%)</td>
<td>(31.8%)</td>
<td>(17.7%)</td>
<td>(17.4%)</td>
<td>(14.4%)</td>
<td>(10.5%)</td>
<td>(7.3%)</td>
</tr>
</tbody>
</table>
Figure 1 - Intervention trial schema.
Figure 1

18,434 Assessed for Eligibility

- 13,194 Excluded
 - 10,058 Screening up to date (54.6%)
 - 3,136 Ineligible due to primary care physician non-participation (28.4%)

5240 Randomized

- 2629 Assigned to Receive Intervention
 - 821 Received Allocated Intervention (41.8%)
 - 1808 Did not Receive Intervention (68.8%)
 - 1026 Not accessible by letter or phone (39%)
 - 782 Did not Attend Navigator Session (29.8%)
 - 326 Declined Participation
 - 317 Found Ineligible
 - 56 Unable to Attend Due to Health
 - 83 Scheduled But Did Not Show

- 2611 Assigned to Wait-List Control

2629 Analyzed

- 923 Completed Screening (35.1%) (within 12 months)

2611 Analyzed

- 533 Completed Screening (20.4%) (within 12 months)
Personal Navigation Increases Colorectal Cancer Screening Uptake

Paul G. Ritvo, Ronald E. Myers, Lawrence F. Paszat, et al.

Cancer Epidemiol Biomarkers Prev Published OnlineFirst November 6, 2014.

Updated version Access the most recent version of this article at: doi:10.1158/1055-9965.EPI-14-0744

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.