Null Results in Brief

No Evidence of Gene–Calcium Interactions from Genome-Wide Analysis of Colorectal Cancer Risk

Mengmeng Du1,2,3, Xuehong Zhang1, Michael Hoffmeister4, Robert E. Schoen5, John A. Baron6, Sonja I. Berndt7, Hermann Brenner8,9, Christopher S. Carlson1, Graham Casey9, Andrew T. Chan3,10, Keith R. Curtis1, David Duggan11, W. James Gauderman12, Edward L. Giovannucci13,14, Jian Gong1, Sonja I. Berndt7, Hermann Brenner4,8, Christopher S. Carlson1, Graham Casey9, Andrew T. Chan3,10, Laurence N. Kolonel20, Loic Le Marchand20, Yi Lin1, Polly A. Newcomb1,2, Anja Rudolph21, Daniela Seminara19, Martha L. Slattery25, Ulrike Peters1,2, Jenny Chang-Claude19, and John D. Potter1,2,26, on behalf of the Colon Cancer Family Registry and Genetics and Epidemiology of Colorectal Cancer Consortium

Abstract

Background: Calcium intake may reduce risk of colorectal cancer, but the mechanisms remain unclear. Studies of interaction between calcium intake and SNPs in calcium-related pathways have yielded inconsistent results.

Methods: To identify gene–calcium interactions, we tested interactions between approximately 2.7 million SNPs across the genome with self-reported calcium intake (from dietary or supplemental sources) in 9,006 colorectal cancer cases and 9,503 controls of European ancestry. To test for multiplicative interactions, we used multivariable logistic regression and defined statistical significance using the conventional genome-wide significance level of \(\alpha = 5 \times 10^{-8} \).

Results: After accounting for multiple comparisons, there were no statistically significant SNP interactions with total, dietary, or supplemental calcium intake.

Conclusions: We found no evidence of SNP interactions with calcium intake for colorectal cancer risk in a large population of 18,509 individuals.

Impact: These results suggest that in genome-wide analysis common genetic variants do not strongly modify the association between calcium intake and colorectal cancer in European populations. Cancer Epidemiol Biomarkers Prev; 1–6. ©2014 AACR.

Introduction

Observational studies suggest that higher calcium intake may reduce risk of colorectal cancer (1, 2); however, the underlying mechanisms remain unclear (2). Gene–environment interaction (GxE) analysis can provide insight into disease pathways (3, 4). Studies of gene–calcium interactions for colorectal cancer have focused on SNPs in calcium-related pathways with limited success (5, 6).

1Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. 2Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts. 3Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. 4Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania. 5Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina. 6Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland. 7German Cancer Consortium (DKTK), Heidelberg, Germany. 8Division of Preventive Medicine, University of Southern California, Los Angeles, California. 9Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. 10Genetic Basis of Human Disease, Translational Genomics Research Institute (TGen), Phoenix, Arizona. 11Keck School of Medicine, University of Southern California, Los Angeles, California. 12Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, Massachusetts. 13Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, New York. 14Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia. 15Ontario Institute for Cancer Research, Toronto, Ontario, Canada. 16Ontario Institute for Cancer Research, Cancer Prevention Program, 1100 Fairview Avenue North, M4-B402, Seattle, WA 98109-1024. 17Division of Cancer Epidemiology, Unit of Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. 18Department of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. 19Division of Hematology, Faculty of Medicine, The University of Ottawa, Ottawa, Ontario, Canada. 20Epidemiology Research Program, American Cancer Society, Atlanta, Georgia. 21Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah. 22Centre for Public Health Research, Massey University, Wellington, New Zealand.

Corresponding Author: Mengmeng Du, Fred Hutchinson Cancer Research Center, Cancer Prevention Program, 1100 Fairview Avenue North, M4-B402, Seattle, WA 98109-1024. Phone: 206-667-2309; Fax: 206-667-7850; E-mail: mdu@fhcrc.org

doi: 10.1158/1055-9965.EPI-14-0893

©2014 American Association for Cancer Research.
The availability of genome-wide SNP data (7) now enables hypothesis-free GxE searches. This method recently identified a novel gene-processed meat interaction for colorectal cancer (3)—highlighting the potential of this approach to provide clues into disease etiology. Here, we tested interactions between approximately 2.7 million SNPs across the genome and calcium intake in 9,006 colorectal cancer cases and 9,503 controls.

Materials and Methods

We included 9,006 individuals with confirmed colorectal adenocarcinomas and 9,503 controls from the Colon Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO; refs. 3, 4, 7). We excluded participants missing all genotype or calcium data, or those of non-European ancestry. Participants gave informed written consent and studies were approved by their respective Institutional Review Boards.

Genotyping, quality control, and imputation procedures have been described previously (4, 7). Imputation to HapMap CEU was conducted using IMPUTE, BEAGLE, or MACH. In each study, SNPs were restricted on the basis of MAF > 0.20/# samples and imputation accuracy (Rsq > 0.3). We tested approximately 2.7 million SNPs.

Data collection/harmonization procedures have been described previously (3, 4). Calcium intake at the reference time was assessed using food frequency questionnaires (FFQ) or diet history (DALS); intake (mg/d) was determined from calcium in foods (i.e., dietary) or supplements (single + multivitamins + antacids) when available. Total intake was calculated as dietary + supplemental calcium. For studies that entered supplement data as regular versus nonuser (CCFR, OFCCR, and PMH-CCFR), regular use was assigned generic doses (1) of 500 mg/d, 500 mg/single pill, or 130 mg/multivitamin pill.

Multivariable logistic regression was used to estimate study-specific ORs and 95% confidence intervals (CI) for the association between calcium and colorectal cancer risk; study-specific estimates were combined using fixed-effects meta-analysis. We tested multiplicative GxE in each study using SNP×calcium interaction terms, adjusting for age, sex, study center, total energy consumption, first 3 principal components of genetic ancestry, and SNP and calcium main effects. This was followed by meta-analysis across studies. Statistical significance was determined using the

Figure 1. Association between calcium intake and risk of colorectal cancer. Odds ratios (ORs) and 95% confidence intervals correspond to each quartile increase in A) total calcium intake (mg/d), B) dietary calcium intake (mg/d), and C) supplemental calcium intake (>500 versus <500 mg/d). Total and dietary calcium intake were coded as sex- and study-specific quartiles based on cutoff points in controls, and modeled as an ordinal variable. Estimates adjusted for age (continuous), sex (F/M), sex, study center, total energy consumption, first 3 principal components of genetic ancestry, and SNP and calcium main effects. This was followed by meta-analysis across studies. Statistical significance was determined using the
Table 1. SNP with smallest P for interaction with total, dietary, or supplemental calcium for colorectal cancer risk

<table>
<thead>
<tr>
<th>Calcium analysis</th>
<th>SNP with smallest P for interaction</th>
<th>Locus</th>
<th>Position (bp)</th>
<th>Function class</th>
<th>Genetic region</th>
<th>Minor allele</th>
<th>Alt allele</th>
<th>MAF</th>
<th>Mean Rsq</th>
<th>Variable</th>
<th>OR-int (95% CI)</th>
<th>P</th>
<th>P_{het}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>rs1933755</td>
<td>6q23.1</td>
<td>130925767</td>
<td>Intergenic</td>
<td>TMEM200A/EPB41L2</td>
<td>C</td>
<td>T</td>
<td>0.10</td>
<td>0.93</td>
<td>Total</td>
<td>0.84 (0.78–0.90)</td>
<td>1.5E–06</td>
<td>4.1E–01</td>
</tr>
<tr>
<td></td>
<td>Dietary</td>
<td>0.86 (0.80–0.92)</td>
<td>5.2E–05</td>
<td>3.2E–01</td>
</tr>
<tr>
<td></td>
<td>Suppl</td>
<td>0.81 (0.65–1.02)</td>
<td>7.4E–02</td>
<td>5.5E–01</td>
</tr>
<tr>
<td>Dietary</td>
<td>rs6855885</td>
<td>4q22.1</td>
<td>92039007</td>
<td>Intronic</td>
<td>FAM190A</td>
<td>A</td>
<td>G</td>
<td>0.50</td>
<td>0.94</td>
<td>Total</td>
<td>1.09 (1.04–1.13)</td>
<td>9.0E–05</td>
<td>2.5E–01</td>
</tr>
<tr>
<td></td>
<td>Dietary</td>
<td>1.11 (1.06–1.16)</td>
<td>1.9E–06</td>
<td>5.5E–01</td>
</tr>
<tr>
<td></td>
<td>Suppl</td>
<td>0.93 (0.81–1.07)</td>
<td>3.0E–01</td>
<td>2.4E–01</td>
</tr>
<tr>
<td>Supplemental</td>
<td>rs1028166</td>
<td>4q34.3</td>
<td>182813298</td>
<td>Intergenic</td>
<td>AGA/TENM3</td>
<td>G</td>
<td>A</td>
<td>0.31</td>
<td>0.85</td>
<td>Total</td>
<td>1.07 (1.02–1.12)</td>
<td>6.7E–03</td>
<td>3.8E–01</td>
</tr>
<tr>
<td></td>
<td>Dietary</td>
<td>1.02 (0.97–1.07)</td>
<td>5.2E–01</td>
<td>7.4E–01</td>
</tr>
<tr>
<td></td>
<td>Suppl</td>
<td>1.49 (1.27–1.74)</td>
<td>7.3E–07</td>
<td>2.9E–01</td>
</tr>
</tbody>
</table>

Abbreviations: Alt, alternate; MAF, minor allele frequency; OR-int, odds ratio for interaction; P_{het}, P for heterogeneity across studies; Rsq, imputation Rsq.

- aOn the basis of NCBI build 37 data.
- bCorresponds to each additional copy of the minor allele (i.e., assuming additive genetic effects) and each quartile increase in calcium intake (total, dietary) or ≥500 versus <500 mg/d (supplemental). Genotyped SNPs were modeled as 0, 1, or 2 copies of the minor allele; imputed SNPs were modeled as the expected number of copies of the minor allele (the genotype “dosage”; refs. 3, 7).
- cOn the basis of multivariable logistic regression adjusted for age (continuous), sex (F/M), study center (indicators), energy consumption (continuous), first 3 principal components of genetic ancestry (continuous), SNP main effect, and calcium main effect.
Results

Higher total calcium intake was associated with reduced colorectal cancer risk (OR per quartile, 0.87; 95% CI, 0.84–0.89; Fig. 1A). Dietary and supplemental calcium were similarly associated with reduced risk (Fig. 1B and C). Total calcium results were similar after excluding studies that entered calcium data from only diet (DALS, DACHS, and PHS) or supplements (CCFR, OFCCR, and FMH-CCFR) (OR, 0.88; 95% CI, 0.84–0.92). Estimates were unchanged for right- versus left-sided cancers (data not shown). Supporting the validity of our calcium data, 2q21.3/MCM6/rs1988235 aka 13910 T>C, a marker of preserved lactase levels in genetic tests of lactase intolerance (8), was associated with dietary (P = 1.1E–13), but not supplemental (P = 5.2E–01), intake.

There were no statistically significant SNP interactions with total, dietary, or supplemental calcium intake for colorectal cancer risk (Table 1). The strongest evidence of interaction was between 4q34.3/rs1028166 and supplemental calcium intake (OR interaction, 1.49; 95% CI, 1.27–1.74; Pinteraction = 7.3E–07). However, rs1028166 was located 669 kb from the nearest protein-coding gene (TENM3) and showed little evidence of interaction with total or dietary intake. The Cocktail approach (3) did not identify statistically significant interactions (data not shown).

Discussion

In this large study, there were no statistically significant SNP interactions with total, dietary, or supplemental calcium intake. Candidate–gene studies of interaction between SNPs in calcium-related genes (e.g., CASR, VDR) and calcium intake have not reported consistent interactions (5, 6). Figueiredo and colleagues (9) investigated genome-wide SNP–calcium interactions for microsatellite-stable/microsatellite-instability low colorectal cancer. Consistent with our findings, they reported no evidence of SNP interactions with total, dietary, or supplemental calcium intake for colorectal cancer. Consistent with our findings, they reported no statistically significant interactions in 1,191 cases and 990 controls.

Strengths of this study include the large sample size, comprehensive genetic data, and harmonization of calcium intake across 13 studies. However, misclassification of calcium intake may have attenuated associations, although calcium assessed by FFQ is reasonably accurate compared with diet records/24-hour recalls [correlations = 0.48–0.70 (ref. 1)], and we detected colorectal cancer associations with magnitudes comparable with previous studies (1, 2). For total calcium quartiles, at α = 5E–08, our study had >80% power to detect interaction ORs ≥ 1.33, 1.23, and 1.17 for SNPs with MAFs of 0.05, 0.10, and 0.20, respectively. We thus had adequate statistical power to detect modest interactions with common variants.

In summary, we did not observe evidence of SNP interactions with calcium intake. This suggests that individual common genetic variants do not strongly modify the association between calcium and colorectal cancer risk in European populations. Large studies with sequence data are needed to investigate interactions involving rare variants.

Disclosure of Potential Conflicts of Interest

D. Seminara is a consultant/advisory board member for Stanford University. No potential conflicts of interest were disclosed by the other authors.

Disclaimer

The content of this article does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the CFRs, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government or the CFR.

Authors’ Contributions

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M. Du, A.T. Chan, R.B. Hayes, A. Rudolph, B.W. Zanke, M.L. Slattery

Study supervision: M. Du, E.L. Giovannucci, M.A. Jenkins, M.D. Thornquist, U. Peters

Other (data harmonization): M.D. Thornquist

Acknowledgments

CCFR: The authors thank all participants, members, and investigators. For additional information see Newcomb, PA and colleagues Colon Cancer Family Registry: an international resource for studies of the genetic epidemiology of colon cancer. Cancer Epidemiol Biomarkers Prev. 2007 Nov;16(11):2331–2343.

DACHS: The authors thank all participants and cooperating clinicians, and Ute Handte-Daub, Renate Hettler-Jensen, Ute Benscheid, Muhabbet Celik, and Ursula Eilber for excellent technical assistance.

GECCO: The authors thank all those at the GECCO Coordinating Center for helping bring together the data and people that made this project possible. The authors also acknowledge COMPASS (Comprehensive Center for the Advancement of Scientific Strategies) at the Fred Hutchinson Cancer Research Center for their work harmonizing the GECCO epidemiologic dataset. The authors acknowledge Dave Duggan and team members at TGEN (Translational Genomics Research Institute), the Broad Institute, and the Genome Québec Innovation Center for genotyping DNA samples of cases and controls, and for scientific input for GECCO.

HIPS, NHS, and PHS: The authors thank Patrice Soule and Hardeep Ranu of the Dana Farber Harvard Cancer Center High-Throughput Polymorphism Core who assisted in the genotyping for NHS, HIPS, and PHS under the supervision of Dr. Immaculata Devivo and

Downloaded from cebp.aacrjournals.org on June 20, 2017. © 2014 American Association for Cancer Research.
Grant Support
C.S. Carlson, K.R. Curtis, M. Du, J. Gong, T.A. Harrison, L. Hou, C.M. Hutter, J.M. Kocarnik, S. Jiao, Y. Liu, P. Peters, M.D. Thorquist, and C.M. Ulrich are affiliated with GECCO, which is supported by the following grants from the National Cancer Institute, NIH, U.S. Department of Health and Human Services: U01 CA137088 and R01 CA059045.

A. Tracht is affiliated with COLO263, which is supported by the NIH (R01 CA69987).

J.A. Baron, G. Casey, J.L. Hopper, M.A. Jenkins, and P.A. Newcomb are affiliated with CCFR, which is supported by the NIH (RFA # CA-95-011) and through cooperative agreements with members of the Colon Cancer Family Registry and P.I.s. This genome-wide scan was supported by the National Cancer Institute, NIH by the U01 CA122839.

The following Colon CFR centers contributed data to this article and were supported by grants from the National Institutes of Health, P.I.s, and M.L. Slattery: Q. Wei, D. Jiao, C. Yang, S. Qiu, and Y. Chen, are affiliated with the Australasian Colon Cancer Family Registry (U01 CA097735), Ontario Registry for Studies of Familial Colorectal Cancer (U01 CA074783), and Seattle Colorectal Cancer Family Registry (U01 CA074794).

J.H. Brenner, J. Champ-Claude, M. Hofmeister, and A. Rudolph are affiliated with DACHS, which was supported by grants from the German Research Council (Deutsche Forschungsgemeinschaft, BR 1704/6-1, BR 1704/6-3, BR 1704/6-4 and CH 117/1-1), and the German Federal Ministry of Education and Research (03Kl0404 and 01ER0814).

J.D. Potter and M.L. Slattery are affiliated with DALs, which was supported by the NIH (R01 CA48986 to M.L. Slattery). A.T. Chan, E.L. Giovannucci, K. Wu, and X. Zhang are affiliated with HPFS, NIH, and P.I. HPFS was supported by the NIH (P01 CA 055075, UM1 CA167051, R01 CA137178, and P50 CA 127003), NCI by the NIH (R01 CA137178, P01 CA 087969, and P50 CA 127003), and PHS by the NIH (R01 CA42182).

B.E. Henderson, L.N. Kolonel, and L. Le Marchand are affiliated with MEC, which is supported by the following grants from the NIH: R01 CA48998, R01 CA053619, and R01 CA63646.

T.J. Hudson and B.W. Zanke are affiliated with OFCCR, which is supported by the NIH, through funding allocated to the Ontario Registry for Studies of Familial Colorectal Cancer (U01 CA074783); see CCFR section above. Additional funding toward genetic analyses of OFCCR includes the Ontario Research Fund, the Canadian Institutes of Health Research, and the Ontario Institute for Cancer Research, through generous support from the Ontario Ministry of Research and Innovation.

S. I. Berndt, R.B. Hayes, and R.E. Schoen are affiliated with PLCO, which was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics and supported by contracts from the Division of Cancer Prevention, National Cancer Institute, NIH, DHFS. In addition, a subset of control samples were genotyped as part of the Cancer Genetic Markers of Susceptibility (CGEMS) Prostate Cancer GWAS (Yeager, M. and colleagues Genome-wide association study of prostate cancer identifies a second risk locus at 8q24, Nat Genet. 2007 May;39(5):645-9, Colon CGEMS pancreatic cancer scan (PanScan); Amundoddottir, L. and colleagues Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet. 2009 Sep;41(9):966-9, and Petersen, GM and colleagues A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q23.1 and 5p15.33. Nat Genet. 2010 Mar;42(3):224-8), and the Lung Cancer and Smoking study (Landi MT, and colleagues A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Ann J Hum Genet. 2009 Nov;85(5):679-91). The prostate and PanScan study datasets were accessed with appropriate approval through the dbGaP online source (http://cgems.cancer.gov/data/) accession numbers phs002007.v1.p1 and phs000206.v3.p2, respectively, and the lung datasets were accessed from the dbGaP website (http://www.ncbi.nlm.nih.gov/gap) through accession number phs000095.v2.p2. Funding for the Lung Cancer and Smoking study was provided by National Institutes of Health (NIH), Genes, Environment, and Health Initiative (GEI) Z01 CP 010200, NIH U01 HG004466, and NIH GEI U01 HG 004458. For the lung study, the GENEVA Coordinating Center provided assistance with genotyping and general study coordination, and the Johns Hopkins University Center for Inherited Disease Research conducted genotyping.

P.A. Newcomb is affiliated with PMH, which is supported by the NIH (RFA # CA-95-011) and through cooperative agreements with members of the Colon Cancer Family Registry and P.I.s. This genome-wide scan was supported by the National Cancer Institute, NIH by the U01 CA122839.

W.J. Gauderman is affiliated with TGEN and funded through a subaward with GECCO (R01 CA48996).

D. Duggan is affiliated with TGEN and funded through a subaward with GECCO (R01 CA48996).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Published OnlineFirst September 5, 2014; DOI: 10.1158/1055-9965.EPI-14-0893

References

No Evidence of Gene–Calcium Interactions from Genome-Wide Analysis of Colorectal Cancer Risk

Mengmeng Du, Xuehong Zhang, Michael Hoffmeister, et al.

Cancer Epidemiol Biomarkers Prev Published OnlineFirst September 5, 2014.

Updated version Access the most recent version of this article at: doi:10.1158/1055-9965.EPI-14-0893

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.