Title: MicroRNA classifier and nomogram for metastasis prediction in colon cancer

Running title: Prognostic microRNA classifier for colon cancer metastasis

Inès J. Goossens-Beumer 1, Remco S. Derr 1, Henk P.J. Buermans 2, Jelle J. Goeman 5, Stefan Böhringer 3, Hans Morreau 4, Ulrich Nitsche 6, Klaus-Peter Janssen 6, Cornelis J.H. van de Velde 1, Peter J.K. Kuppen 1

1 Department of Surgery, 2 Department of Human Genetics / Leiden Genome Technology Center, 3 Department of Medical Statistics and Bioinformatics, 4 Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands; 5 Biostatistics, Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands; 6 Department of Surgery, Klinikum rechts der Isar, Technical University München, Munich, Germany

Key words: colorectal neoplasms; metastasis; microRNAs; nomogram

Corresponding author: Dr. Peter J.K. Kuppen, Department of Surgery, K6-R, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands; phone: 0031 715262309, fax: 0031 715266750, email: p.j.k.kuppen@lumc.nl

Conflict of interest statement: None declared

Other notes:

Abstract: 250 words

References (manuscript): 50

Figure and Tables: 6

Supplementary Files: 7
Abstract

Background: Colon cancer prognosis and treatment are currently based on a classification system still showing large heterogeneity in clinical outcome, especially in TNM-stages II-III. Prognostic biomarkers for metastasis risk are warranted as development of distant recurrent disease mainly accounts for the high lethality rates of colon cancer. MicroRNAs have been proposed as potential biomarkers for cancer. Furthermore, a verified standard for normalization of the amount of input material in PCR based relative quantification of miRNA expression is lacking.

Methods: A selection of frozen tumor specimens from two independent patient cohorts with TNM-stage II-III microsatellite stable primary adenocarcinomas were used for laser capture microdissection. Next generation sequencing was performed on small RNAs isolated from colorectal tumors from the Dutch cohort (N=50). Differential expression analysis, comparing in metastasized- and non-metastasized tumors, identified prognostic microRNAs. Validation was performed on colon tumors from the German cohort (N=43) using qPCR.

Results: MiR-25-3p and miR-339-5p were identified and validated as independent prognostic markers and used to construct a multivariate nomogram for metastasis risk prediction. The nomogram showed good probability prediction in validation. Additionally, we recommend combination of miR-16-5p and miR-26a-5p as standard for normalization in qPCR of colon cancer tissue-derived microRNA expression.

Conclusions: In this international study we identified and validated a miRNA classifier in primary cancers, and propose a nomogram capable of predicting metastasis risk in microsatellite stable TNM-stage II-III colon cancer.

Impact: In conjunction with TNM-staging, by means of a nomogram, this microRNA classifier may allow for personalized treatment decisions based on individual tumor characteristics.
Introduction

MicroRNAs (miRNAs) are endogenous non-coding RNAs with a sequence length of 19 to 25 nucleotides (miRBase v19), that are key post-transcriptional regulators of gene expression (1), and highly conserved between species (2). They have important regulatory functions in basic cellular processes, thereby affecting major biological systems such as stemness and immunity (3). Depending on the level of complementarity of the miRNA to its target mRNA, the particular transcripts are targeted for transcriptional repression or cleaved for degradation. MiRNAs are predicted to be involved in regulation of over 60% of the protein-coding RNAs (4). With their frequent location at fragile sites and genomic regions involved in cancer (5), it is not surprising that deregulation of miRNA expression, by both genetic and epigenetic mechanisms, is linked to tumorigenesis (6, 7), including the formation of metastasis (8).

Treatment modalities of colon cancer patients are still essentially based on the anatomical extent of disease at diagnosis (TNM-staging method of the American Joint Committee on Cancer/UICC). Even under the current classification, patient groups still show large differences in clinical outcome (9-11), especially for patients with locally advanced, but not distantly metastasized, tumors (TNM-stage II-III). Clinically, current criteria for identification of high-risk patients in this group of colon cancer, which would require adjuvant therapy, include clinical and histological criteria T4 stage, poor differentiation, tumor perforation, or insufficient lymphadenectomy (9, 12). Biomarkers that can predict the development of distant recurrent disease would help identifying those cancer patients that may benefit from adjuvant therapy and/or close follow-up in addition to surgery. The use of such biomarkers in conjunction with the TNM-staging method, by means of a nomogram, may contribute to an approach of personalized treatment based on individual tumor characteristics. MiRNA profiles, identified by comparing expression of miRNAs between patients with- and without metastases in the follow-up, have been constructed for several cancer types (13). As discussed by de Krijger et al. (14), a similar profile for colon cancer patients is warranted since the development of distant metastases mainly accounts for the high lethality rates of colon cancer.

Single miRNAs have multiple target genes (15), and target genes can be regulated by different miRNA transcripts. The tissue-specific (16) and cell-type-specific (17) nature of miRNA expression, combined with the high degree of heterogeneity of colon tumors with regard to the amount of stroma and immune infiltrate, requires selection of target cells by microdissection (18), like laser capture
microdissection (LCM). To be able to investigate expression of the whole micronome, and the possibility of detecting novel miRNAs, a next generation sequencing (NGS) approach is recommended (19). Previous studies reporting on miRNA classifier profiles for metastasis prediction in colon or colorectal cancer (20-24) did not use the optimal approach of identification of miRNAs by comparison of their expression patterns between patients with- and without metachronous metastasis using NGS in microdissected tumors. For PCR based relative quantification of miRNA expression, a verified standard for normalization of the amount of input material is lacking. We therefore also aimed to assess which miRNA(s) would be suitable for usage as reference in miRNA-specific real-time PCR.

In this bi-centric international study, we studied miRNA expression in two independent retrospective patient cohorts, both containing microsatellite stable tumors. Tumor tissue from the discovery cohort (Dutch colorectal cancer cohort, N=50) and the validation cohort (German colon cancer cohort, N=43) were subjected to LCM. High-depth NGS was used to study the predictive value of miRNAs for metachronous metastasis risk in the discovery cohort. NGS data were technically validated with low-depth NGS and miRNA specific stem-loop real-time quantitative PCRs (RT-qPCR). Results were validated in an independent cohort, using RT-qPCR. Multivariate survival analyses for distant recurrence-free period showed a hazard ratio of nearly 11 in the validation cohort. With our study, we identified and validated a miRNA expression classifier in the primary tumor, and propose a nomogram capable of predicting metastasis risk in microsatellite stable colon cancer. Additionally, we recommend a new standard for normalization of the amount of input material in PCR based relative quantification of colon tissue-derived miRNA expression.
Materials and Methods

Study cohort

Patients for the discovery phase were selected from a colorectal cancer patient population (N=200) who underwent surgery between 2001 and 2012 at the Leiden University Medical Center, with available snap-frozen primary tumor material. Microsatellite stability status was determined as described previously (25, 26). For the study cohort we included only histologically proven TNM-stage II-III first primary colorectal carcinomas of the microsatellite stable phenotype, of patients who did not receive pre-operative treatment. We selected the 24 patients with distant metachronous distant metastases and matched these to patients without metastases. Matching criteria were TNM-stage, age at surgery, gender, and location of the tumor. The discovery study cohort consisted of 50 patients (Table 1). All patients were under clinical follow-up surveillance according to the current Dutch National Guidelines.

For validation, patients were selected from a colon cancer patient population (N=242), in part described previously (27), who underwent surgery between 1987 and 2006 at the Department of Surgery, Klinikum rechts der Isar, Technische Universität München (TUM). All patients gave written, informed consent, with approval of the Ethics committee of the Medical Faculty of TUM (#1926/07). Included tumors were histologically proven TNM-stage II-III first primary colon carcinomas with microsatellite stable phenotype, with available snap-frozen primary tumor material. We selected the patients with metachronous distant metastases (N=21) and matched these to patients without metastases. Matching criteria were similar as described above. The validation study population consisted of 43 patients (Table 1). All patients received the recommended post-operative follow-up care, according to the national German guidelines (S3 guidelines by the German Cancer Society DGK/AWMF).

All samples were coded, according to National ethical guidelines ("Code for Proper Secondary Use of Human Tissue", Dutch Federation of Medical Scientific Societies). This study was performed according to the REMARK guidelines (NCI-EORTC) (28).

Laser capture microdissection and preparation of RNA

Snap-frozen tumor tissues were collected for each patient. LCM was performed to select cancerous epithelial cells. Haematoxylin staining, LCM and subsequent sample lysis was completed within 1
hour. Sections (8µm-thick) mounted on LCM-suitable slides (Zeiss, Oberkochen, Germany) were processed on the PALM MicroBeam (Zeiss). A minimum of 3 mm² cancer cell area of the sections was collected. RNA was extracted using the Just-a-Tube™ sample total RNA/microRNA purification kit (Charm Biotech, San Diego, California, USA) for the discovery cohort or TRIZol Reagent (Life Technologies, Carlsbad, CA, USA) for the validation cohort, according to manufacturers recommendations. Total RNA quantity and miRNA quality were assessed with the NanoDrop 1000 (Thermo Scientific, Wilmington, DE, USA) and RNA 6000 Pico total RNA-Chip (Agilent Technologies, Santa Clara, CA, USA) respectively.

Preparation for next generation sequencing
Tumor tissue libraries for NGS were prepared as described by Buermans et al. (29). One universal forward primer and fourteen reverse primers, with different barcodes, were available for the amplification PCR. A unique barcode was assigned to each sample within a sample-pool. The presence of cDNA was assessed with a high-sensitivity DNA Chip (HS-DNA Chip; Agilent Technologies). Additionally, a set of RT-qPCRs served to show whether miRNAs were present. Samples with at least 90% of desirable sequence lengths, with calculated insert sizes of 17-25 nucleotides, were randomly pooled into 4 pools in equimolar volumes of 2 nM and subsequently re-assessed with HS-DNA Chip.

Next generation sequencing with HiSeq2000 and Ion Torrent and data extraction
High-depth NGS was performed on the four miRNA pools, loaded into 4 different lanes of a Illumina HiSeq2000 v3-flowcell with v3-reagents (Illumina, San Diego, CA, USA). The sequence run type was a single-end read of 50 cycles with an added sample-index read for pooled-sample identification. Additionally, low-depth NGS was performed using the Ion Torrent platform with an Ion314 chip (Life Technologies) to sequence a pooled subset of 13 of the 50 samples, and used for technical validation. Data from both NGS-runs were extracted and processed into raw count data per miRNA as described previously (29, 30), with minor adaptations. In summary, the 3'-library adapter was removed from the sequences, and remaining reads of at least 15 bases were aligned to the human Hg19 reference genome using the Bowtie short-read aligner allowing for up to three loci with two mismatches. Crossmapping correction was applied to the alignments as described by de Hoon et al. (31). Aligned sequence tags were annotated based on the miRBase v19 release resulting in separate expression
values for the 5' and 3' mature miRNAs from the hairpin precursors. Data are publically available (GEO number: xxx).

Data analysis next generation sequencing

Data analysis was performed in R version 3.0.1. Library sizes were defined as the total number of annotated miRNA reads per sample. Normalization started with transforming raw miRNA count data to counts per million (cpm) using the library size consisting of only annotated miRNA isoforms (miRBase v19). Subsequently, quantile normalization (R-package limma) was performed, according to the recommendations of Garmire et al. (32, 33). All libraries passed quality control (R-package arrayQualityMetrics) before and after normalization. Low-expression miRNAs, which are those without expression of at least 1 cpm in at least 10 of the 50 samples, were excluded from analysis. Subsequently library sizes were reset to the remaining number of miRNA reads.

Differential expression analysis was performed using the non-parametric Wilcoxon rank sum test (R-package stats) to restrict the influence of expression outliers on the results, and the number of false positive miRNAs. The number of normalized reads is representative for the expression of a miRNA in that sequence library. Multiple testing correction of p-values was performed with fdr.

Technical validation of the HiSeq NGS data with the Ion Torrent NGS data was performed by determining three different correlation coefficients. The intraclass correlation coefficient (ICC; absolute agreement) as a measure of intra- and inter-samples variability and the Pearson product-moment (Pearson's r) correlation coefficient as a measure of the linear correlation between the two datasets per sample, were determined on cpm data of all detected miRNAs. Additionally, the Spearman's rank correlation coefficient (Spearman's rho) on rank data was calculated as a measure of statistical dependence between the two datasets per sample. Included were ranked data of miRNAs with more than 2 raw counts in both NGS datasets. A significant p-value (p<0.05) indicated correlation for the miRNA expression profiles per patients for the two datasets.

Identification of reference miRNAs for technical validation and validation of results by qPCR were determined using the coefficient of variation (CV) per miRNA, with a low CV indicating the miRNAs with the best linear relation between the number of isoform-specific miRNA reads and the total number of reads across the samples. To calculate the CV per miRNA, the standard deviation was divided by the average number of reads.
Stem-loop real-time PCR and data analysis

Eight different genes from the top-ten-list of the differential expression analysis and two reference miRNAs were validated by RT-qPCR. MiRNA specific cDNA was prepared with the Taqman miRNA reverse transcription kit (Applied Biosystems, San Francisco, CA, USA) combined with miRNA assays (Applied Biosystems) in 96-well plates. The real-time PCR of the different Taqman miRNA assays (Applied Biosystems) were run on the CFX-384 machine (Bio-Rad, Hercules, CA, USA), using the Taqman universal master mix II (Applied Biosystems). Thresholds for calculation of the cycle threshold (Ct) were set separately for each miRNA. Data are available upon request. Triplicate measurements were averaged for further analyses. The average of miR-16 Ct value and miR-26a Ct value per sample served as reference for relative expression calculations (formula $2^{\Delta Ct}$). The Pearson's r, as a measure of the linear correlation between the two datasets per sample, was determined per miRNA on NGS and RT-qPCR data of all patients. Additionally, the Spearman’s rho on rank data, as a measure of statistical dependence between the two datasets, was calculated per miRNA on NGS and RT-qPCR data of all patients.

Survival analyses

Relative expression of different miRNAs, as determined by RT-qPCR, was used as predictor in survival analyses with the statistical package SPSS 20.0 for Windows (SPSS Inc, Chicago, Illinois, USA). Patients were dichotomized per miRNA based on the average of mean and median as determined in the discovery cohort. Receiver operating characteristic (ROC) curves for the individual miRNAs were used to assess the specificity and sensitivity of the chosen cut-off values. The relationship between dichotomized relative miRNA expression and known clinicopathological parameters was investigated using the Pearson χ^2 test. The Cox proportional hazards model was used to analyze the association between relative miRNA expression with distant recurrence-free period (DRFP), defined as the time from surgery until the diagnosis of the first distant recurrence. Differences in DRFP between patient groups are presented as hazard ratios (HRs). Cumulative risk curves were calculated, accounting for death by all causes as competing risk for metastasis, and served to visualize the associations (34). The most important covariates for colon cancer, being age at surgery, TNM-stage and gender, were included in multivariate analyses irrespective of statistical significance. The high expression group served as reference for all survival analyses. All tests were two-tailed and p-values <0.05 were considered statistically significant. A nomogram for prediction of distant
metastasis in colon cancer was constructed (R-package rms) using the model obtained from the multivariate survival analysis of the discovery cohort. Calibration plots (R-package rms) and ROC curves were used to assess the prediction performance and accuracy of the nomogram. For comparison we performed the survival analyses for the validation cohort after building the survival model by using the dichotomization cut-off as determined on the discovery cohort.

Gene target prediction

MiRNA gene target prediction was performed by combining results from three different target prediction databases and a database containing validated targets. Results from individual predicted miRNA target searches of the TargetScan, DIANA-microT-CDS and the miRDB were combined with the results of the validated miRNA target database miRTarBase. Putative target genes were assessed for their associated Gene Ontology (GO)-terms using the on-line functional annotation tool DAVID. Additionally a NCBI gene and PubMed search was performed for target gene associations with cancer (metastasis) using the HGNC-symbol.
Results

Next generation sequencing and annotation of microRNAs in colon cancer

High-depth multiplex-NGS of miRNAs from tumor cells of 50 patients in the discovery cohort, randomly divided into four sample pools, yielded variable raw library sizes with an average of >7 million reads. The total number of reads aligned to miRNA sequences is denoted the miRNA library size of a particular tumor specimen. Spreading of the amount of sequence reads (e.g. library sizes) across samples is shown in Supplementary File S1A. Analysis revealed expression of 2707 from 7160 annotated miRNA isoforms (miRBase v19) in at least 1 of the 50 tumor specimens. After removal of low-expression miRNA’s, 667 miRNAs remained eligible for statistical analyses. MiR-21-5p was most abundant in our dataset, representing an average of almost 10% of the miRNA sequence reads per sample. The spread of percentages of the total miRNA library sizes represented by the three most abundantly expressed miRNAs is shown as boxplots in Supplementary File S1B, per miRNA.

Technical validation of microRNA expression by next generation sequencing

Low-depth NGS with the Ion Torrent was used to sequence 13 of the 50 tumor specimens for technical validation. Sequence depths ranged from 50 to 1500 reads per sample. Analysis revealed expression of 325 annotated miRNA isoforms in at least one of the 13 tumor samples. All these miRNAs were also detected in the high-depth HiSeq NGS analysis. Correlation analysis of paired samples in the HiSeq and Ion Torrent datasets confirmed reproducibility of miRNA expression across the different NGS platforms, even with considerable differences in sequence depth between the two platforms (Supplementary File S2a).

Differential expression of microRNAs associated with distant metastasis

The expression of the 667 miRNAs detected by HiSeq NGS were assessed for differences between metastasized and non-metastasized primary tumors. Differential expression analysis identified 32 miRNAs with non-adjusted p-values of 0.02 or lower (Table 2, Supplementary File S3). From these miRNA isoforms, 19 (59%) showed lower expression and 13 (41%) showed higher expression in metastasized tumors compared to non-metastasized tumors. This top-list indicated that both the 3p and 5p variant of miR-378 were differentially expressed. Additionally, for miR-1, miR-135a, miR-365, and miR550a two different transcripts were differentially expressed. Eight of the top-ten-listed miRNAs were selected for technical validation with PCR.
Identification of reference microRNAs for validation purposes

MiRNA expression patterns were assessed to identify reference miRNAs for (technical) validation using RT-qPCR. Those miRNAs with the best linear relation between the number of isoform-specific miRNA reads (or miRNA expression) and the total number of miRNA reads (or miRNA library size) across the samples were identified by calculating the coefficient of variation (CV) per miRNA. A low CV indicates low standard deviation combined with high average expression. Calculated CVs and data of subsequent linear modeling of the two miRNAs with lowest CV, being miR-16-1-5p and miR-26a1-5p, are shown in Supplementary File S4a. The linear relation of miRNA expression and miRNA library size, and the residuals plots were plotted for graphical inspection (Supplementary File S4b). By selecting two miRNAs as combined reference we aimed to produce a more robust reference, as compared to a single miRNA. For normalization of the amount of input material in the validation phase we identified the combination of miR-16-1-5p and miR-26a1-5p as the most suitable reference.

Validation of this combination of miRNAs was performed using online available miRNA sequencing data from the cancer genome atlas (TCGA) data portal (Supplementary File S4c). Results endorse our findings. Additionally, normalization of our Hiseq NGS-data with the combination of these two miRNAs resulted in similar results in differential expression analysis compared to the selected normalization of NGS data as described in the Materials in Methods section (data not shown). These results indicate the capability/suitability of this combination of miRNAs for normalization purposes of quantitative PCR of colon tissue-derived miRNA expression.

Assessment of microRNA expression by stem-loop real-time PCR

For technical validation in the discovery cohort and validation of results in the validation cohort RT-qPCR was performed for 8 top-ten-listed miRNAs identified in the differential expression analysis of HiSeq NGS-data (Table 2). Expression was calculated relative to the average expression of miR-16-1-5p and miR-26a1-5p. Tested miRNAs were technically validated with Pearson’s r and Spearman’s rho correlation analysis (Supplementary File S2b). Selection of variables that can provide robust prediction is an important aspect for survival model building. miRNAs varying strongly between cohorts can by definition not serve as such robust predictors. Therefore, selection of miRNAs for survival model building was based on miRNAs showing both similar expression patterns between NGS and RT-qPCR (discovery cohort), and similar relative expression ranges in the discovery and validation cohort as assessed by RT-qPCR. Four of the assessed miRNAs, namely miR-25-3p, miR-339-5p, miR-378-3p...
and miR-550a-1-5p, showed similar expression patterns between the NGS and RT-qPCR data in the
discovery cohort. For miR-25-3p and miR-339-5p relative expression ranges were similar between the
tumors of the discovery and the validation cohort. Differential expression results, as identified by
HiSeq NGS, were supported by RT-qPCR results (Figure 1). In both patient cohorts, a lower
expression of either miRNA was associated with the occurrence of a metachronous metastasis.

Prognostic value of microRNAs for distant recurrence-free period

Survival model building was performed on the RT-qPCR data of the discovery cohort using univariate
and multivariate Cox regression analyses on miR-25-3p and miR-339-5p together with predetermined
covariates. Afterwards, for comparison, we performed the survival analyses in the validation cohort.
Except for survival status and distant metastasis status, neither individual expression of miR-25-3p nor
miR-339-5p expression, or their combination was associated with any other clinicopathological
parameter (Supplementary File S5). Survival analyses were performed to assess differences in DRFP
between low and high relative expression groups for the two individual miRNAs. Cut-off values for
group classification were determined in the discovery cohort at 0.279 and 0.0143 for miR-25-3p and
miR-339-5p, respectively. ROC curves for the individual miRNAs were used to assess the specificity
and sensitivity of the chosen cut-off values in the discovery set, and confirmed them to be optimal
(Supplementary File S6). Univariate analyses showed an association between high relative miRNA
expression and shorter DRFP for either miRNA in both the discovery and the validation cohort (Table
3). Histograms showing the relation between height of miRNA expression and number of patients with
a distant metastasis at the time point 5-years from surgery (Figure 2a), and cumulative incidence
curves for DRFP (Figure 2b) were plotted. Multivariate analyses identified both miR-25-3p and miR-
339-5p as independent prognostic factor for DRFP (Table 3). Hazard ratios were consistently more
pronounced in the validation cohort compared to the discovery cohort.

Combination of biomarkers may better reflect tumor aggressiveness and might increase the clinical
discriminative and prognostic value. Therefore, expression of miR-25-3p and miR-339-5p were
combined into two groups, being high expression of both miRNAs and low expression of one or both
miRNAs. Cumulative incidence curves illustrating univariate survival analyses for DRFP were plotted
(Figure 2c). The 5-year survival percentage for DRFP in the discovery cohort and the validation cohort
was respectively 70% and 93% for patients with a high miRNA expression for both miRNAs compared
to respectively 39% and 31% for patients with low expression for one or two of the miRNAs.
Multivariate analyses identified combined expression levels of miR-25-3p and miR-339-5p as independent prognostic factor for DRFP (Table 3). Patients with a high expression of both miRNAs were shown to have an 11 times lower change of developing a distant metastasis in the validation cohort based on multivariate survival analyses.

Nomogram for prediction of distant recurrence risk
Using the multivariate survival model combining miR-256-3p and miR-339-5p for DRFP estimated on the discovery cohort (Table 3) we constructed a nomogram to quantitatively predict the probability of metachronous distant metastasis in new cancer patients (Figure 3A), at 3-years and 5-years after surgery. The nomogram was based on primary tumors of TNM-stage II-III colorectal cancer patients with a microsatellite stable phenotype. The miRNA-based classifier and the predetermined most important non-subjective clinicopathological risk factors were integrated in the nomogram. The calibration plot showed that the prediction performance of the nomogram was good compared to the ideal model (Figure 3B). The predictive accuracy of the nomogram was assessed in an independent patient cohort with a ROC analysis (Figure 3C). The concordance index (Figure 3C) for the multivariate survival model (Table 3), indicated good probability prediction for the prognostic multivariate survival model in the independent validation cohort.

MicroRNA gene targets
MiRNAs have numerous target genes, and exert tissue specific transcriptional regulation. To assess possible target genes for miR-25-3p and miR-339-5p, gene target prediction was performed (Supplementary File S7a) by combining results from three well-established tools (TargetScan, DIANA-microT-CDS and miRDB) and a database containing validated targets (miRTarBase). For miR-25-3p and miR-339-5p we found, respectively, 38 and 36 overlapping target genes predicted in all three target prediction databases, indicating poor agreement between the target prediction databases. GO-term enrichment was performed for these overlapping targets (Supplementary File S7b). Additionally, only 1 or 2 of the overlapping predicted target genes for miR-25-3p or miR-339-5p was validated according to the miRTarBase. The number of common target genes for miR-25-3p and miR-339-5p, predicted by the same database(s), was 66 (Supplementary File S7c). We assessed the associated GO-terms of the putative target genes using online annotation tool DAVID, and performed a NCBI gene and PubMed search using the HGNC-symbols (Supplementary File S7). Annotation analysis of
putative target genes suggests involvement of these genes in cellular metabolic processes, indicating a possible role for the identified miRNAs in cellular metabolism. In conclusion, functional studies are needed to unravel the actual target genes of miR-25-3p and miR-339-5p in colon cancer cells.
Discussion

In this study, we identified the combination of miR-25-3p and miR-339-5p expression levels in tumor cells as independent prognostic factor for the occurrence of distant metastasis in TNM-stage II-III colon cancer with a microsatellite stable phenotype. We proposed, and retrospectively validated in an independent patient cohort, a nomogram for prediction of distant metastasis for this group of patients. Additionally, we recommend combination of miR-16-5p and miR-26a-5p as standard for normalization in qPCR of colon cancer tissue-derived miRNA expression.

Multiple different processes are involved in carcinogenesis, with many key genes/proteins. The hallmarks of cancer (35) represent properties that a cell needs to attain in order to become and sustain itself as cancer cell. These hallmarks direct the cellular pathways involved in carcinogenesis, and particularly metastasis formation. Using expression of miRNAs for prognostication of clinical outcome for cancer has advantage over mRNAs, as miRNAs are considered the key post-transcriptional regulators of gene expression, with numerous simultaneous target genes (15) and involvement in various cellular pathways. In contrast to mRNA, these post-transcriptional master regulators, are highly conserved between species (2).

Several miRNA profiles for prediction of metastasis risk in colon cancer patients have been proposed before (20-24). Recently, a six-miRNA-based classifier, differing from the combination of miRNAs reported here, was published (24). Zhang and co-workers identified a six-miRNA-based classifier as independent prognostic factor for DRFP in TNM-stage II colon cancer patients. However, the discriminative value of these miRNAs could not be confirmed with our NGS data, as individual miRNAs were neither differentially expressed between patients with- and without metachronous metastasis nor prognostic for distant metastasis risk. Differences in identified miRNAs might be due to the substantial dissimilarities of the respective study designs and patient cohorts. Given the large heterogeneity of colon cancers, with regard to the amount of stroma and immune infiltrate, it is essential to use microdissected cancer cells and high-depth sequencing of the micronome. A combination of these approaches with the specific assessment of differential expression between patients presenting with- or without metachronous metastasis allows prediction of an accurate prognostic (multivariate) model for metastasis risk. Moreover, it is crucial to subsequently validate the model in an independent patient cohort. Exclusion of patients with low percentages of cancerous epithelial cells leads to biased patient cohorts, as high stroma content of tumors is itself associated
with worse clinical outcome (36). Inclusion of these patients requires selection of target cells by microdissection (18), due to the tissue-type and cell-specific nature of miRNA expression (16, 17). To obtain the most uniform cell population we used LCM, which is a laborious technique most likely not applicable for routine clinical use. Alternatively, manual microdissection can be used, which is already standard procedure for assessment of PCR-based biomarkers in many diagnostics laboratories. In addition, introduction of automated microdissection using robotics is upcoming. To the best of our knowledge, this is the first study to combine LCM with high-depth sequencing of miRNAs, aiming to address differential expression between patients presenting with- and without distant metachronous metastasis for accurate prognostication.

A relatively small number of miRNAs account for the majority of raw sequence reads in the miRNA libraries, as seen before (22). We hypothesized that these miRNAs, being miR-21-5p, miR-192-5p and miR-19b-2-3p, are important in colon cells, and probably in colon carcinogenesis, but not necessary in the process of metastasis. MiRNA-21-5p was previously reported to show increased expression in tumor compared to normal colon mucosa (37), and was linked to early onset carcino genesis (38). Two independent manuscripts reported that increased expression of miR-21, predominantly in the stroma compartment and not the cancer cells, is associated with clinical outcome in TNM-stage II colon patients (39, 40). These findings might explain why we did not see an association between miR-21 expression and metastasis risk, unlike others (24). Decreased expression of miR-192 was identified in tumor compared to normal colon tissue (41) and linked to early onset colon carcinogenesis (38). Upregulation of miR-19b was associated with colon cancer (42) and with 5-fluorouracil resistance in colon cancer cells (43).

Based on the linear relation between miRNA expression and miRNA library size we identified combination of miR-16-5p and miR-26a-5p as most suitable reference for qPCR. Both miRNAs have been recognized before as suitable reference miRNAs (44) in a Taqman microarray based approach. While our analysis was limited to TNM-stage II-III colon cancer patients, Chang et al. validated the miRNAs in a colorectal cancer cohort of TNM stage I-IV patients. These according results confirm the utility of these miRNAs as reference for qPCR in cancer tissues of colorectal origin.

As discussed previously (45), function of miR-25 can be oncogenic or tumor repressive depending on the tissue type. Generally, expression of miR-25 is higher in cancer cells of epithelial origin, and in tumor stroma, compared to normal colon mucosa (45, 46). We showed that expression of miR-25-3p
is lower in colon cancer patients with distant metachronous metastases compared to those without distant metastases. In prostate cancer cell lines, a similar expression pattern was observed (47), with increase in expression of carcinoma cell lines compared to immortalized normal cells, and subsequently lower expression in cell lines from prostate carcinoma metastasized to distant locations compared to those of primary tumors (47). Taken together, these data suggest that in colon cancer, expression of miR-25-3p, after initial increase, might need to be decreased to some extent to enable the initiation of the distant metastasis process. Indeed, Li et al. showed that over-expression of miR-25 suppressed migratory ability of colon cancer cells in vitro and decreased tumorigenic potential in a colon cancer xenografts (45). In addition, Baffa et al. reported decreased expression of miR-25 in metastases compared to their associated primary colon tumor (48). Expression of miR-339-5p has been linked to the process of distant metastases in breast cancer (49). Similar to the association we observed for miR-339-5p, higher expression was associated with lower metastasis rates, and in addition reduced cancer cell growth and better patient survival in breast cancer (49). Also for prostate cancer, lower expression of miR-339-5p was observed in metastatic cancer (50).

To date, treatment allocation of colon cancer patients is based on the TNM-classification system. Under current classification, patient groups still show large differences in clinical outcome (9-11). Moreover, clinically defined risk-criteria for adjuvant therapy in locally restricted colon cancer are currently considered to be of insufficient quality (9, 12). The development of distant recurrent disease mainly accounts for colon cancer related mortality. The use of the miRNA combination reported here, capable of predicting metastasis risk in colon cancer, in conjunction with the TNM-staging method, may contribute to an approach of personalized treatment based on individual tumor characteristics. In conclusion, in this bi-centric international study we retrospectively identified and validated a miRNA classifier in the primary tumor using two independent patient sets, and propose a nomogram capable of predicting metastasis risk in microsatellite stable TNM-stage II-III colon cancer.
Acknowledgements

We would like to thank Sabine Leis and Anne Benard for their help in the collection and processing of frozen tissue samples of the validation cohort.
19. Prognostic microRNA classifier for colon cancer metastasis

Reference List

20. Prognostic microRNA classifier for colon cancer metastasis

21. Prognostic microRNA classifier for colon cancer metastasis

Table 1. Associations of the patient cohorts with clinicopathological parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>discovery cohort</th>
<th>validation cohort</th>
<th>p</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>6 12.0</td>
<td>1 4.7</td>
<td>2</td>
<td>0.002</td>
</tr>
<tr>
<td>50-75</td>
<td>34 68.0</td>
<td>20 95.3</td>
<td>21</td>
<td>95.5</td>
</tr>
<tr>
<td>>75</td>
<td>10 20.0</td>
<td>5 19.3</td>
<td>5</td>
<td>20.8</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>13 50.0</td>
<td>14 58.3</td>
<td>13</td>
<td>31.8</td>
</tr>
<tr>
<td>male</td>
<td>10 46.0</td>
<td>10 41.7</td>
<td>30</td>
<td>68.2</td>
</tr>
<tr>
<td>TNM-stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>7 14.0</td>
<td>12 21.7</td>
<td>7</td>
<td>13.8</td>
</tr>
<tr>
<td>III</td>
<td>43 86.0</td>
<td>22 41.7</td>
<td>43</td>
<td>86.0</td>
</tr>
<tr>
<td>Tumor location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>right sided</td>
<td>24 48.0</td>
<td>13 54.2</td>
<td>18</td>
<td>41.9</td>
</tr>
<tr>
<td>left sided</td>
<td>24 48.0</td>
<td>10 41.7</td>
<td>25</td>
<td>58.1</td>
</tr>
<tr>
<td>rectum</td>
<td>2 4.0</td>
<td>1 4.1</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tumor diameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 5 cm</td>
<td>33 66.0</td>
<td>20 38.1</td>
<td>22</td>
<td>51.2</td>
</tr>
<tr>
<td>> 5 cm</td>
<td>17 34.0</td>
<td>6 12.5</td>
<td>21</td>
<td>48.8</td>
</tr>
<tr>
<td>Deceased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>24 48.0</td>
<td>12 46.2</td>
<td>24</td>
<td>55.8</td>
</tr>
<tr>
<td>yes</td>
<td>26 52.0</td>
<td>10 21.7</td>
<td>19</td>
<td>44.2</td>
</tr>
<tr>
<td>Adjuvant therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>22 44.0</td>
<td>10 41.7</td>
<td>34</td>
<td>79.1</td>
</tr>
<tr>
<td>yes</td>
<td>28 56.0</td>
<td>14 58.3</td>
<td>9</td>
<td>20.9</td>
</tr>
<tr>
<td>FU years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>range</td>
<td>0.14-10.86</td>
<td>0.31-12.47</td>
<td>4.33</td>
<td>6.96</td>
</tr>
<tr>
<td>mean</td>
<td>4.33</td>
<td></td>
<td>6.96</td>
<td></td>
</tr>
</tbody>
</table>

Shown are data from associations of the discovery- and validation patient cohort with clinicopathological parameters. Cohorts are divided into patients with- and without metastasis in the follow-up. Significant associations are indicated in bold.

Abbreviations: N= number of patients, p= p-value, M-= no metastasis, M+= metachronous metastasis
Table 2. List of most differentially expressed microRNAs

<table>
<thead>
<tr>
<th>miRNA</th>
<th>chr</th>
<th>p-value</th>
<th>FC</th>
<th>validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-378a-3p</td>
<td>5</td>
<td>0.000032*</td>
<td>-1.95</td>
<td>002243</td>
</tr>
<tr>
<td>miR-378a-5p</td>
<td>5</td>
<td>0.00011</td>
<td>2.67</td>
<td>000460</td>
</tr>
<tr>
<td>miR-135a-1-5p</td>
<td>12</td>
<td>0.00011</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>miR-29b-2-5p</td>
<td>1</td>
<td>0.0013</td>
<td>2.00</td>
<td>002166</td>
</tr>
<tr>
<td>miR-589-5p</td>
<td>7</td>
<td>0.0015</td>
<td>-7.09</td>
<td>002409</td>
</tr>
<tr>
<td>miR-140-5p</td>
<td>16</td>
<td>0.0036</td>
<td>1.72</td>
<td>001187</td>
</tr>
<tr>
<td>miR-25-3p</td>
<td>7</td>
<td>0.0036</td>
<td>-1.70</td>
<td>000403</td>
</tr>
<tr>
<td>miR-339-5p</td>
<td>7</td>
<td>0.0038</td>
<td>-1.62</td>
<td>002257</td>
</tr>
<tr>
<td>miR-378a-5p</td>
<td>5</td>
<td>0.0050</td>
<td>-1.61</td>
<td></td>
</tr>
<tr>
<td>miR-550a-1-5p</td>
<td>7</td>
<td>0.0060</td>
<td>-1.38</td>
<td>002410</td>
</tr>
<tr>
<td>miR-1-1-3p</td>
<td>20</td>
<td>0.0060</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>miR-550a-2-5p</td>
<td>7</td>
<td>0.0064</td>
<td>-1.36</td>
<td></td>
</tr>
<tr>
<td>miR-31-5p</td>
<td>9</td>
<td>0.0068</td>
<td>2.21</td>
<td></td>
</tr>
<tr>
<td>miR-1-2-3p</td>
<td>18</td>
<td>0.0068</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>miR-1226-3p</td>
<td>3</td>
<td>0.0069</td>
<td>3.21</td>
<td></td>
</tr>
<tr>
<td>miR-1977-3p</td>
<td>1</td>
<td>0.0076</td>
<td>3.19</td>
<td></td>
</tr>
<tr>
<td>miR-188-5p</td>
<td>X</td>
<td>0.0077</td>
<td>-1.62</td>
<td></td>
</tr>
<tr>
<td>miR-200c-3p</td>
<td>12</td>
<td>0.0082</td>
<td>-1.60</td>
<td></td>
</tr>
<tr>
<td>miR-33b-3p</td>
<td>17</td>
<td>0.0085</td>
<td>-4.36</td>
<td></td>
</tr>
<tr>
<td>miR-365b-3p</td>
<td>17</td>
<td>0.011</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>miR-365a-3p</td>
<td>16</td>
<td>0.012</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>AL133472.1-5p</td>
<td>6</td>
<td>0.012</td>
<td>-2.18</td>
<td></td>
</tr>
<tr>
<td>miR-363-3p</td>
<td>X</td>
<td>0.013</td>
<td>8.67</td>
<td></td>
</tr>
<tr>
<td>miR-592-5p</td>
<td>7</td>
<td>0.015</td>
<td>-1.94</td>
<td></td>
</tr>
<tr>
<td>miR-299-5p</td>
<td>14</td>
<td>0.015</td>
<td>-2.01</td>
<td></td>
</tr>
<tr>
<td>miR-205-5p</td>
<td>1</td>
<td>0.016</td>
<td>9.60</td>
<td></td>
</tr>
<tr>
<td>miR-7-2-5p</td>
<td>15</td>
<td>0.016</td>
<td>-1.71</td>
<td></td>
</tr>
<tr>
<td>miR-194-2-3p</td>
<td>11</td>
<td>0.016</td>
<td>-1.66</td>
<td></td>
</tr>
<tr>
<td>miR-425-5p</td>
<td>3</td>
<td>0.016</td>
<td>-1.42</td>
<td></td>
</tr>
<tr>
<td>miR-106b-3p</td>
<td>7</td>
<td>0.018</td>
<td>-1.46</td>
<td></td>
</tr>
<tr>
<td>miR-147b-3p</td>
<td>15</td>
<td>0.019</td>
<td>-4.49</td>
<td></td>
</tr>
<tr>
<td>miR-552-5p</td>
<td>1</td>
<td>0.019</td>
<td>-1.71</td>
<td></td>
</tr>
<tr>
<td>ref miR-16-5p</td>
<td>13</td>
<td>NA</td>
<td>NA</td>
<td>000391</td>
</tr>
<tr>
<td>ref miR-26a-5p</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>000405</td>
</tr>
</tbody>
</table>

Shown is the top-list of differentially expressed miRNAs, with p-values below 0.02, when comparing normalized miRNA expression in patients with non-metastatic and metastatic tumors. The chromosome (chr) on which the miRNAs is located is listed. P-values were computed using the Wilcoxon rank sum test. The fold change (FC) is computed for the non-metastasized tumors versus the metastasized tumors. The most right column indicates which miRNA isoforms were validated. Given is the assay number of the RT-qPCR (Applied Biosystems). Abbreviations: ref= reference miRNA for RT-qPCR, NA= not applicable, *Significant after fdr.
Table 3. Results of survival analyses for DRFP of individual and combined microRNA expression

<table>
<thead>
<tr>
<th></th>
<th>miR-25-3p</th>
<th></th>
<th>miR-339-5p</th>
<th></th>
<th>miRNA combination</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95%CI</td>
<td>p</td>
<td>HR</td>
<td>95%CI</td>
<td>p</td>
</tr>
<tr>
<td>discovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>uni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miRNA</td>
<td>2.43</td>
<td>0.96-6.13</td>
<td>0.06</td>
<td>2.41</td>
<td>1.00-5.84</td>
<td>0.05</td>
</tr>
<tr>
<td>age at surgery</td>
<td>2.37</td>
<td>0.93-6.03</td>
<td>0.07</td>
<td>2.29</td>
<td>0.90-5.82</td>
<td>0.08</td>
</tr>
<tr>
<td>TNM-stage</td>
<td>1.42</td>
<td>0.42-4.85</td>
<td>0.58</td>
<td>1.06</td>
<td>0.30-3.73</td>
<td>0.93</td>
</tr>
<tr>
<td>gender</td>
<td>0.78</td>
<td>0.34-1.79</td>
<td>0.57</td>
<td>0.86</td>
<td>0.37-1.98</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>multivariate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miRNA</td>
<td>4.21</td>
<td>1.42-12.53</td>
<td>0.01</td>
<td>3.92</td>
<td>1.51-10.17</td>
<td>0.005</td>
</tr>
<tr>
<td>age at surgery</td>
<td>5.76</td>
<td>1.82-18.20</td>
<td>0.003</td>
<td>4.11</td>
<td>1.57-10.75</td>
<td>0.004</td>
</tr>
<tr>
<td>TNM-stage</td>
<td>1.88</td>
<td>0.56-6.28</td>
<td>0.31</td>
<td>1.56</td>
<td>0.48-5.11</td>
<td>0.46</td>
</tr>
<tr>
<td>gender</td>
<td>0.67</td>
<td>0.24-1.88</td>
<td>0.45</td>
<td>0.84</td>
<td>0.32-2.21</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Shown are the data from univariate and multivariate survival analyses of individual and combined miRNA expression. Data are shown for the patients in the discovery- (N=50) and validation cohort (N=43) separately. HRs are given for high expression versus low expression or high expression of both miRNAs versus low expression of one or both miRNAs, for individual and combined miRNA analyses respectively. Significant associations are indicated in bold.

Abbreviations: N= numbers at risk, HR= hazard ratio, CI= confidence interval, p= p-value, DRFP= Distant recurrence-free period
Figure legends

Figure 1. Validation microRNA expression profiles

Shown are miRNA expression profiles per miRNA of the discovery cohort (N=50) and the validation cohort (N=43), for miR-25-3p and miR-339-5p, as assessed by RT-qPCR. Patients are divided based on the occurrence of a metachronous metastasis. Expression is given relative to the average expression of miR-16-5p and miR-26a-5p, who together serve as normalization for the amount of input material. For indicative purposes the p-values using the Wilcoxon rank sum test were specified.

Abbreviations: M= no metastasis in the follow-up, M+= metastasis in the follow-up, P= p-value

Figure 2. Graphical presentations of distant metastasis incidence and risk in patient groups

Data are shown for the discovery cohort (N=50) and the validation cohort (N=43) separately.

A. Presented are histograms showing individual miRNA expression in relation to the metastasis status of the different patients, at 5 years after surgery. The bar-colors indicate if patients presented with (red) or without (green) a metastasis at the 5-year time-point. Patients that were censored in the first five years after surgery were not shown. The cut-off values for division of patients into high and low expression groups for miR-25-3p (0.279) and miR-339-5p (0.0143), are presented as a blue horizontal lines. The percentages of patients without a metastasis are indicated for high and low expression groups.

B. The competing risk for the development of metachronous metastasis is death by any cause. Cumulative incidence curves, that account for competing risks, illustrate univariate survival analyses of individual miRNA expression. P-values of the univariate Cox proportional hazard analyses are presented in the graphs. Patients were divided into two groups: high expression (▬) and low expression (—).

C. Cumulative incidence curves, that account for competing risks, illustrating univariate survival analyses of combined miRNA expression of miR-25-3p and miR-339-5p. P-values of the univariate Cox proportional hazard analyses are presented in the graphs. Patients were divided into two groups: high expression of both miR-25-3p and miR-339-5p (▬) and low expression of one or both miRNAs (—).

Figure 3. Nomogram for prediction of metastasis probability in colon cancer

A. Shown is the nomogram for the prediction of metastasis in colon carcinoma based on the multivariate survival model of the discovery cohort. Age at surgery is in units of 10 years. The total points were converted to the Linear Predictor and then to predicted probabilities. 3-Year ‘Metastasis-free’ Probability and 5-Year ‘Metastasis-free’ Probability denotes the probability of not having a metastasis at 3 or 5 years after surgery.
B. The calibration plot gives the prediction performance of the proposed nomogram in the discovery cohort, with the closer to the 45°-line the better the performance. C. Plotted is a ROC curve for the independent validation cohort of the survival model used in the nomogram. As a measure of the accuracy of the probability prediction of the prognostic model, the AUC is denoted, with the closer to 1 the better the model.
Figure 1.

miR-25-3p

Discovery

Validation

P = 0.082

P = 0.086

P = 0.087

P = 0.078

miR-339-5p

Discovery

Validation

P = 0.087

P = 0.078
Figure 2.

A. Discovery cohort

B. Discovery cohort

C. Discovery cohort

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
Figure 3.

A.

Points

<table>
<thead>
<tr>
<th>Points</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR25_miR339</td>
<td>two or one low</td>
<td>both high</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNM_stage</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>age_at_surgery</td>
<td>3.5 4.5 5.5 6.5 7.5 8.5</td>
<td></td>
</tr>
<tr>
<td>gender</td>
<td>female</td>
<td></td>
</tr>
<tr>
<td>Total Points</td>
<td>0 20 40 60 80 100 120 140 160 180 200 220</td>
<td></td>
</tr>
<tr>
<td>Linear Predictor</td>
<td>-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8</td>
<td></td>
</tr>
<tr>
<td>3-Year 'Meta-free' Probability</td>
<td>0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4</td>
<td></td>
</tr>
<tr>
<td>5-Year 'Meta-free' Probability</td>
<td>0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25</td>
<td></td>
</tr>
</tbody>
</table>

B.

ROC Curve

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Specificity</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

AUC = 0.80
SE = 0.07
P = 0.001
95% CI = 0.67 - 0.93

dataset: validation

C.

Calibration Curve

dataset: discovery

<table>
<thead>
<tr>
<th>Observed Survival Probability</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Survival Probability</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>
MicroRNA classifier and nomogram for metastasis prediction in colon cancer

Cancer Epidemiol Biomarkers Prev Published OnlineFirst October 14, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-14-0544-T
doi:10.1158/1055-9965.EPI-14-0544-T

Supplementary Material
Access the most recent supplemental material at:
http://cebp.aacrjournals.org/content/suppl/2014/10/15/1055-9965.EPI-14-0544-T.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.