Smoking, lower gastrointestinal endoscopy, and risk for colorectal cancer

Michael Hoffmeister,1 Lina Jansen,1 Christian Stock,1,2 Jenny Chang-Claude,3 Hermann Brenner1

1Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Germany
2Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
3Unit of Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany

Running head: Smoking, endoscopy and colorectal cancer risk

Grant support: This work was supported by the German Research Council (grants BR 1704/6-1, BR 1704/6-3, BR 1704/6-4 to H. Brenner, and grant CH 117/1-1 to J. Chang-Claude), the German Federal Ministry of Education and Research (grant 01KH0404 to H. Brenner and grant 01ER0814 to multiple recipients including H. Brenner and J. Chang-Claude). The sponsors did not have any role in this study.

Disclosures: The authors declare that they have no conflict of interest.

Original article
Word count: 3,140 words
3 tables, 2 figures, 1 supplementary table

Address for correspondence:
Michael Hoffmeister, PhD
German Cancer Research Center (DKFZ)
Division of Clinical Epidemiology and Aging Research
Im Neuenheimer Feld 581
69120 Heidelberg, Germany
Phone +49 6221 42-1303
Fax +49 6221 42-1302
E-mail m.hoffmeister@dkfz.de
Abstract

Background: Lower gastrointestinal (GI) endoscopy can decrease colorectal cancer (CRC) risk strongly through detection and removal of adenomas. Thus, we aimed to investigate whether utilization of lower GI endoscopy modifies the effect of lifetime smoking exposure on CRC risk in a population-based case-control study.

Methods: In this study from Southern Germany including 2,916 CRC patients and 3,044 controls, information about lifetime smoking and other risk factors was obtained from standardized interviews. Self-reported endoscopies were validated by medical records. Multivariate logistic regression was performed to investigate associations of smoking with CRC risk after stratification by utilization of lower GI endoscopy in the preceding 10 years.

Results: Median age of patients and controls was 69 and 70 years, respectively. Former regular smoking was associated with increased CRC risk in the group with no previous endoscopy (adjusted odds ratio (OR) 1.50, 95% confidence interval 1.28-1.75), whereas no association was found in the group with preceding endoscopy (OR 1.05, 0.83-1.33; p for interaction <0.01). Lower GI endoscopy did not modify the association of smoking and CRC risk among current smokers and among the more recent quitters.

Conclusions: Our results suggest that the increased risk of CRC among former regular smokers is essentially overcome by detection and removal of adenomas at lower GI endoscopy. However, risk of CRC was increased if smoking was continued into higher adult age.

Impact: The strong protective effect of lower GI endoscopy may be compromised by continued smoking. Smoking cessation may increase the efficacy of lower GI endoscopy.

Key words: smoking, colonoscopy, screening, early detection

Abstract word count: 248 words
Introduction

Cigarette smoking is an established risk factor of both colorectal adenomas (CRA) and colorectal cancer (CRC). In meta-analyses, pooled relative risks of CRA and CRC were 1.8 and 1.2, respectively (1, 2). Due to the high proportion of current and former smokers among older adults, noteworthy fractions of advanced adenomas and cancers are attributable to smoking, and it has been suggested that recommendations for screening and surveillance for the prevention and early detection of CRC should address smokers specifically (3-5).

Lower gastrointestinal (GI) endoscopy, i.e. sigmoidoscopy or colonoscopy, with its potential to detect and remove adenomas and thereby to decrease CRC risk strongly (6, 7), has been utilized by an increasing proportion of older adults in the past two decades in Western countries (8-11), particularly after expert committees started to recommend screening by sigmoidoscopy and colonoscopy (12-15).

As smoking increases CRC risk and, even more, adenoma risk, previous utilization of lower GI endoscopy could attenuate smoking-associated CRC risk through removal of adenomas that may partly have developed into carcinomas (see Figure 1 for an illustration). Studies on the association of smoking and CRC risk conducted during the late 1990s and after the year 2000 that were not accounting for preceding colorectal endoscopies might therefore have underestimated the true carcinogenic effect of smoking (2, 16, 17).

The aim of this study was to investigate whether previous utilization of lower GI endoscopy modifies the association of smoking and CRC risk.
Materials & Methods

Study design and study population

The analyses were conducted within the DACHS study, a population-based case-control study from Germany including 3,148 cases and 3,274 controls recruited between 2003-2010. The DACHS study (DACHS is derived from the German study title 'Darmkrebs: Chancen der Verhütung durch Screening' (Colorectal cancer: potentials of prevention by screening)) is conducted in the Rhine-Neckar region in the southwest of Germany in an area with approximately 2 million inhabitants. All 22 hospitals offering CRC surgery in the study region participate in the recruitment of patients with a first diagnosis of primary CRC for this study. Eligible controls were randomly selected from population registers and frequency-matched to cases by age, sex and county of residence. Cases and controls were eligible for this study if they were able to speak German, were at least 30 years old (no upper age limit), and were physically and mentally able to participate in an interview of about 1 hour. Control individuals with a history of CRC were excluded. Based on hospital statistics, approximately 50% of eligible patients in the study area were recruited. The participation rate of controls was 51%. More details of the study design have been reported previously (18, 19). The study was approved by the ethical committees of the Medical Faculty of the University of Heidelberg and the Medical Chambers of Baden-Württemberg and Rhineland-Palatinate. Written informed consent was obtained from each participant.

Data collection

Patients were informed about the study by their treating physicians, mostly during hospital stay after surgery or by mail after discharge from hospital. If patients agreed to participate a notification was sent to the study centre. The study centre then informed one of the trained study interviewers to conduct the personal interview. Controls were contacted through mail and follow-up calls, and interviews were scheduled at their homes. A minority of control participants (23%) not willing to participate in a personal interview provided information in a
self-administered questionnaire including key information. For all patients pathology reports and discharge letters were requested, and all primary cases of CRC were histologically confirmed. All information in the questionnaires was truncated at the index date which was the date of diagnosis among the cases and the date of interview among the controls.

Assessment of active smoking

Information on lifetime active smoking was based on self-reports. Subjects were asked whether they had ever smoked at least 1 cigarette per day for at least 3 months. An ever regular smoker was defined as someone having smoked at least 100 cigarettes in lifetime. Former smoking was defined as having stopped smoking >2 years before the index date. Pack-years of smoking were calculated from the average number of cigarettes smoked daily multiplied by the duration of smoking in years divided by 20 (one pack-year is defined as e.g. 20 cigarettes per day for one year or 10 cigarettes per day for two years).

Assessment of previous lower GI endoscopy utilization

Information about previous utilization of colorectal endoscopies was obtained in great detail during the interviews, not including endoscopies conducted during the diagnostic process of the CRC diagnosis. If prior utilization of lower GI endoscopy was reported, we requested matching endoscopy reports from the participants' physicians and corrected self-reported information in case of obvious inconsistencies, which were found to be rare (20). According to endoscopy reports, more than 95% of lower GI endoscopies were colonoscopies. They were conducted for various reasons, of which screening was the most common one (21).

Study exclusions

For this analysis, we excluded all individuals with endoscopies conducted more than 10 years ago (178 cases, 225 controls) to assess a potential modifying effect of colorectal endoscopies within the preceding 10 years. A 10-year period was selected because 10 years
are the currently recommended maximum screening interval before lower GI endoscopy should be repeated in older adults to prevent CRC (22, 23). Also, we excluded 41 patients whose last endoscopy was conducted less than 1 year before, to be sure that examinations that were part of the diagnostic process are excluded. We further excluded current or former smokers who started regular smoking within the preceding 10 years or whose information on smoking was missing (13 cases, 5 controls). Finally, 2,916 patients and 3,044 remained in the analyses.

Multiple imputation of missing data

The self-administered questionnaire that was offered to control participants who denied a full interview included no information about former weight in its early version and thus no information on former body mass index (BMI) was available (N=482, 16% of controls). As former BMI (mean time before diagnosis (cases) or interview (controls): 10 years) is more relevant in investigations of CRC risk than current BMI, and because additional missing data in the other covariates in multivariate analyses (ranging from 0.2% to 3%) can sum up to a considerable proportion of excluded subjects in complete-case-analyses, we performed multiple imputation using the Markov-Chain Monte Carlo method to fill in missing data (N=5 imputed datasets, SAS procedure PROC MI). The variables in the imputation model included all covariates of the multivariate logistic regression model (see below) plus the additional explanatory variables height and current BMI. Thereby, data from 5,960 instead of 5,077 participants (85%) could be analyzed.

Statistical analyses

We compared the distribution of potential risk factors and protective factors among patients and controls, and assessed differences between the two groups by chi-square tests (see Table 1). Unconditional multiple logistic regression was employed to estimate adjusted odds ratios (ORs) and their 95% confidence intervals (95% CI) for the association of...
smoking and CRC risk among cases and controls with no previous lower GI endoscopy and with a previous lower GI endoscopy in the preceding 10 years, respectively. ORs for regular smoking were adjusted for age and sex, and for the following additional potential confounders: school education (≤ 9 / 10-11/ 12+ years), previous general health screening examination (yes/no), history of CRC in a first-degree relative (yes/no), former BMI (based on weight 10 years ago on average, per increment of 5kg/m²), regular use of nonsteroidal anti-inflammatory drugs (2+ times per week for at least one year, ever/never), ever use of hormone replacement therapy (HRT, ever/never), previous diagnosis of diabetes (yes/no), physical activity (average metabolic equivalent hours per week in past 12 months), and alcohol consumption (average ethanol intake per week in last 12 months). Interaction of regular smoking and utilization of lower GI endoscopy in the preceding 10 years regarding CRC risk was evaluated after inclusion of a multiplicative term into the model. More specific analyses addressed timing of smoking (current, former), time since smoking cessation, location (colon, rectum) and stage of CRC (stage I-II, stage III-IV).

Restricted cubic spline analyses were conducted on the association of pack-years of smoking and CRC risk to illustrate dose-response associations for (a) current smoking with no previous endoscopy, (b) current smoking with endoscopy in the preceding 10 years, (c) former smoking with no previous endoscopy, (d) former smoking with endoscopy in the preceding 10 years. The 25th, 50th, and 75th percentile of pack-years of smoking among the controls were used to define the spline knots for each group (bullet points). Adjusted ORs and 95% CI were calculated (same covariates as listed above) for associations of CRC risk with 10, 20, 30 and 40 pack-years of smoking.

All analyses were carried out with SAS statistical software package, version 9.2 (SAS Institute Inc, Cary, North Carolina). Statistical tests were two-sided using an alpha level of 0.05. For descriptive analyses of the study population, we used the dataset containing all 5 imputed datasets, rounded imputed information to the next higher or lower category.
wherever necessary, and assigned a weight inverse to the number of imputed datasets (weight=0.2) in order to obtain averaged results. SAS procedures PROC LOGISTIC and PROC MIANALYZE were used for logistic regression analyses across the imputed datasets. Dose-response analyses by restricted cubic spline functions were calculated using the SAS macro by Desquilbet and Mariotti (24).
Results

Median age among cases and controls was 69 and 70 years, respectively (Table 1). The proportion of female participants was 41% among both cases and controls. Control subjects more often had a higher school education and a previous colonoscopy, whereas cases had more frequently first degree relatives with CRC and a smoking history, and were more often obese (p < 0.01). Slightly more than half of the CRCs were stage I or II, and two thirds were located in the distal colon or rectum. Among cases and controls, 54% and 47% were ever regular smokers, respectively. According to endoscopy reports, most lower GI endoscopies were colonoscopies (95%).

In multivariate analyses, ever smoking was associated with an increased risk of CRC in the total study population (with and without adjustment for a lower GI endoscopy in the preceding 10 years: OR 1.35, 95% confidence interval 1.20-1.53 and OR 1.36, 1.22-1.52, respectively).

Former smoking was associated with CRC risk in the group with no previous lower GI endoscopy (OR 1.50, 1.28-1.75), but not in those with lower GI endoscopy in the preceding 10 years (1.05, 0.83-1.33; p for interaction <0.01) (Table 2). Among current smokers, risk of CRC was not attenuated by previous utilization of lower GI endoscopy (OR 1.85, 1.25-2.65). Also, if smoking was stopped 3-9 or 10-19 years before, no reduction of the smoking related excess risk could be observed (OR 1.92, 1.16-3.18, and OR 1.53, 1.02-2.28, respectively). No risk of CRC was observed with smoking, if smoking was stopped ≥20 years ago in the group with previous lower GI endoscopy. Findings were very similar without multiple imputation of missing data (data not shown).

Among current smokers, risk was similarly elevated for colon and rectum cancer, early and late stage cancer in the group with previous lower GI endoscopy (Table 3). Among former smokers, no significant differences were observed in the endoscopy group by CRC site and
stage regarding the absence of a smoking-associated risk. Results for proximal and distal location within the colon were very similar (data not shown).

An additional analysis using never smokers without lower GI endoscopy as a reference yielded adjusted ORs of 1.43 (1.16-1.76), 0.75 (0.67-0.84), and 0.49 (0.45-0.54) for current smokers without lower GI endoscopy, current smokers with lower GI endoscopy, and never smokers with lower GI endoscopy in the preceding 10 years, respectively.

In dose-response analyses, the ORs of CRC risk increased steadily from 10 to 40 pack-years of smoking (and beyond) among current smokers whether or not a previous lower GI endoscopy had been performed (no endoscopy group: OR 1.16 to OR 1.73; endoscopy group: OR 1.27 to OR 2.24) (Figure 2). Among former smokers, ORs were only slightly but non-significantly elevated, and did not increase with higher numbers of pack-years in the group with preceding lower GI endoscopy. If no endoscopy had been performed before, risk of CRC increased with numbers of pack-years, but did not further increase above 20 pack-years. Restricted cubic spline analyses yielded similar results if duration of smoking in years was used instead of pack-years of smoking (figures not shown). In supplementary table 1, additional results are provided on the association of CRC risk with pack-years of smoking, duration of smoking, and average number of cigarettes smoked per day.
Discussion

In this study a previous endoscopy of the large bowel modified the observed effect of smoking on CRC risk. Ever regular smoking was associated with increased risk in the group with no previous lower GI endoscopy, but no association was seen among those with a lower GI endoscopy in the preceding 10 years. However, if smoking was continued or stopped less than 20 years in the past, risk of CRC was still increased despite previous endoscopy.

Lower GI endoscopy has been utilized by an increasing proportion of older adults over the past two decades in Western societies (8-11), particularly after expert committees started to recommend screening by lower GI endoscopy for the prevention and early detection of CRC (12-15). Utilization of endoscopy in Germany (and in this study) refers to colonoscopy in the vast majority of examinations. In Germany, a first screening colonoscopy is offered from age 55 since the year 2002. In addition, diagnostic colonoscopies are conducted due to detection of fecal occult blood in stool or follow-up of symptoms, and surveillance colonoscopies after findings of adenomatous polyps. Compared with several other European countries, Germany's prevalence is among the highest (25), but the prevalence in the USA was found to be even higher (26). If adenomas are detected, different surveillance intervals are recommended for the next colonoscopy which are similar to the US recommendations, depending on whether a low-risk (5 years) or a high-risk adenoma situation (3 years or less) was present (23). In general, carriers of adenomas are at increased risk of CRC compared with non-carriers, even after removal of adenomas.

In meta-analyses of observational studies, ever smoking was associated with increased risk of CRC incidence (e.g. pooled relative risk 1.18, 1.11-1.25) (2). Although a very large number of studies has investigated the association of smoking and CRC, only few considered information on lower GI endoscopy in their analyses (27-32). Potential modifying effects by previous utilization of lower GI endoscopy (as illustrated in Figure 1) were not assessed in these studies and, to our knowledge, not in any other study on smoking and
CRC risk. As suggested by our study, the carcinogenic risk associated with smoking may be underestimated the smoking-associated risk of CRC if previous utilization of large GI endoscopy is not considered.

Our study is in line with previous studies reporting that among former smokers risk of CRC is increased for up to 30 years after smoking cessation (32, 33). In the present study, smoking cessation within the past <20 years was still associated with higher CRC risk even though a colorectal endoscopy had been conducted in the preceding 10 years. Reasons may include that precursors or molecular subtypes of CRC were not detected or were not yet detectable during endoscopy. Supporting this theory of an involvement of both biological and technical factors, smoking was found to be more strongly associated with specific subtypes of CRC, such as high-level microsatellite instability (MSI-high) CRC, CpG island methylator phenotype (CIMP-high) and mutations in the \textit{BRAF} gene (34), all of which are primarily prevalent in right-sided CRCs (35). Colonoscopy with polypectomy was shown to be less effective in reducing the risk of right-sided CRC than with respect to left-sided CRC (7, 36, 37), and specific subtypes or precursors may have been overseen. Recent findings also point to an association of smoking with the occurrence of flat adenomas which are more difficult to detect (38). Taken together, although an overall significantly lower risk was observed following endoscopy with potential polypectomy in the preceding 10 years, this study also suggests that lower GI endoscopy may not or not fully compensate for CRC risk associated with smoking if continued until higher adult age. Compared with never smokers without a preceding lower GI endoscopy, moderate risk reduction of CRC was observed even among current smokers with a preceding lower GI endoscopy. However, risk reduction was much stronger among never smokers with a preceding lower GI endoscopy.

Strengths of our study include its large size which enabled assessment of smoking-associated CRC risk by utilization of lower GI endoscopy and tests for interaction with smoking. Diagnosis of CRC was confirmed for all patients by medical records including
pathology reports. Detailed information on smoking over lifetime and on many relevant risk or protective factors of CRC was available to adjust for in multivariate analyses. Regarding utilization of preceding colorectal endoscopies, information was based on endoscopy reports that were available for most self-reported endoscopies. In addition, the overall validity of self-reported colorectal endoscopies has been demonstrated in a subsample of the study population (20).

Potential weaknesses of this observational study include selection bias among controls (response rate: 51%) and possibly incomplete or inadequate adjustment for confounding despite the extensive characterization of the participants available from personal interviews. Also, the study was primarily designed to assess the potential of endoscopic screening which, on the other hand, facilitated a clear division of groups with and without preceding lower GI endoscopy. Lifetime history of smoking and other factors affecting CRC risk in our multivariate analyses were retrospectively assessed. In particular, it is difficult to retrospectively assess the number of cigarettes smoked at various ages over lifetime. Thus, the number of pack-years and the age at cessation of smoking will only be an approximation in this study. Despite its overall large size, the study only allowed for limited subgroup analyses, and the study was not sufficiently powered to detect moderate effect modifications and weaker associations of smoking and CRC risk after stratifying by endoscopy status.

Despite these limitations, this study found effect modification of the association of smoking and CRC risk by lower GI endoscopy. Consideration of history of endoscopy is essential for estimating carcinogenic effects of smoking with respect to CRC in populations and during times with widespread utilization of lower GI endoscopy. The persisting increased risk among current, but not among former smokers after lower GI endoscopy furthermore suggests that the strong protective effect of lower GI endoscopy may be substantially compromised by continued smoking. Accordingly, activities aiming at smoking cessation
and smoking prevention may increase the efficacy of lower GI endoscopy. Lower GI endoscopy, be it in the context of diagnosis or screening, should go along with efforts to support smoking cessation in people who still smoke.
Acknowledgements: We are grateful to the study participants and the interviewers who collected the data. We would like to thank the following hospitals and cooperating institutions which recruited patients for this study: Chirurgische Universitätsklinik Heidelberg, Klinik am Gesundbrunnen Heilbronn, St Vincentiuskrankenhaus Speyer, St Josefskrankenhaus Heidelberg, Chirurgische Universitätsklinik Mannheim, Diakonissenkrankenhaus Speyer, Krankenhaus Salem Heidelberg, Kreiskrankenhaus Schwetzingen, St Marienkrankenhaus Ludwigshafen, Klinikum Ludwigshafen, Stadtklinik Frankenthal, Diakoniekrankenhaus Mannheim, Kreiskrankenhaus Sinsheim, Klinikum am Plattenwald Bad Friedrichshall, Kreiskrankenhaus Weinheim, Kreiskrankenhaus Eberbach, Kreiskrankenhaus Buchen, Kreiskrankenhaus Mosbach, Enddarmzentrum Mannheim, Kreiskrankenhaus Brackenheim, Cancer Registry of Rhineland-Palatinate, Mainz.

We would like to thank Ute Handte-Daub, Renate Hettler-Jensen, Petra Bächer, and Dr. Utz Benscheid for their excellent technical assistance. Thanks to Dr. Ben Schöttker and Lena Koch for sharing their experience with the multiple imputation procedure.
References

Table 1. Characteristics of the study population.

<table>
<thead>
<tr>
<th></th>
<th>Cases (N=2,916)</th>
<th>Controls (N=3,044)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1,197 (41)</td>
<td>1,236 (41)</td>
<td>0.73</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><60 years</td>
<td>592 (20)</td>
<td>515 (17)</td>
<td></td>
</tr>
<tr>
<td>60-69 years</td>
<td>934 (32)</td>
<td>913 (35)</td>
<td></td>
</tr>
<tr>
<td>70-79 years</td>
<td>938 (32)</td>
<td>1,058 (35)</td>
<td><0.01</td>
</tr>
<tr>
<td>80+ years</td>
<td>452 (16)</td>
<td>558 (18)</td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>69 (30-96)</td>
<td>70 (34-99)</td>
<td></td>
</tr>
<tr>
<td>School education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤9 years</td>
<td>1,991 (68)</td>
<td>1,821 (60)</td>
<td></td>
</tr>
<tr>
<td>10-11 years</td>
<td>480 (17)</td>
<td>588 (20)</td>
<td><0.01</td>
</tr>
<tr>
<td>12-13 years</td>
<td>440 (15)</td>
<td>609 (20)</td>
<td></td>
</tr>
<tr>
<td>History of CRC in a first degree relative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No / unknown</td>
<td>2,499 (86)</td>
<td>2,719 (89)</td>
<td><0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>417 (14)</td>
<td>325 (11)</td>
<td></td>
</tr>
<tr>
<td>Previous lower Gl endoscopy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No / unknown</td>
<td>2,422 (83)</td>
<td>1,536 (50)</td>
<td><0.01</td>
</tr>
<tr>
<td>Yes</td>
<td>494 (17)</td>
<td>1,508 (50)</td>
<td></td>
</tr>
<tr>
<td>Former body mass index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><25 kg/m²</td>
<td>921 (32)</td>
<td>1,164 (38)</td>
<td></td>
</tr>
<tr>
<td>25-<30 kg/m²</td>
<td>1,369 (47)</td>
<td>1,437 (47)</td>
<td><0.01</td>
</tr>
<tr>
<td>≥30 kg/m²</td>
<td>626 (21)</td>
<td>443 (15)</td>
<td></td>
</tr>
<tr>
<td>Cigarette smoking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>1,338 (46)</td>
<td>1,596 (53)</td>
<td><0.01</td>
</tr>
<tr>
<td>Former</td>
<td>1,119 (38)</td>
<td>1,108 (36)</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>456 (16)</td>
<td>333 (11)</td>
<td></td>
</tr>
<tr>
<td>1-9 pack-years</td>
<td>510 (18)</td>
<td>521 (17)</td>
<td></td>
</tr>
<tr>
<td>10-19 pack-years</td>
<td>374 (13)</td>
<td>321 (11)</td>
<td></td>
</tr>
<tr>
<td>20-29 pack-years</td>
<td>275 (9)</td>
<td>259 (9)</td>
<td><0.01</td>
</tr>
<tr>
<td>≥30 pack-years</td>
<td>404 (14)</td>
<td>306 (10)</td>
<td></td>
</tr>
<tr>
<td>Cancer stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage I</td>
<td>667 (23)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage II</td>
<td>910 (31)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage III</td>
<td>910 (31)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stage IV</td>
<td>417 (14)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cancer location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal colon</td>
<td>927 (32)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Distal colon</td>
<td>795 (27)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rectum</td>
<td>1,213 (42)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2. Association of regular smoking and colorectal cancer risk among cases and controls with no previous lower GI endoscopy and among cases and controls with utilization of lower GI endoscopy in the preceding 10 years.

<table>
<thead>
<tr>
<th>Time since smoking cessation</th>
<th>No previous lower GI endoscopy</th>
<th>lower GI endoscopy in the preceding 10 years</th>
<th>P for interaction<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases (%)</td>
<td>Controls (%) OR (95% CI)<sup>a</sup></td>
<td>Cases (%)</td>
</tr>
<tr>
<td>Non-smokers</td>
<td>1093 (45)</td>
<td>824 (54)</td>
<td>245 (50)</td>
</tr>
<tr>
<td>Ever smokers</td>
<td>1,329 (55)</td>
<td>712 (46)</td>
<td>249 (50)</td>
</tr>
<tr>
<td>Current smokers</td>
<td>395 (16)</td>
<td>219 (14)</td>
<td>61 (12)</td>
</tr>
<tr>
<td>Former smokers</td>
<td>932 (39)</td>
<td>490 (32)</td>
<td>187 (38)</td>
</tr>
<tr>
<td>3-9 years</td>
<td>138 (6)</td>
<td>73 (4)</td>
<td>29 (6)</td>
</tr>
<tr>
<td>10-19 years</td>
<td>228 (9)</td>
<td>97 (6)</td>
<td>47 (10)</td>
</tr>
<tr>
<td>20-29 years</td>
<td>223 (9)</td>
<td>102 (7)</td>
<td>34 (7)</td>
</tr>
<tr>
<td>≥30 years</td>
<td>341 (14)</td>
<td>217 (14)</td>
<td>77 (16)</td>
</tr>
<tr>
<td>P for trend</td>
<td></td>
<td></td>
<td>0.27</td>
</tr>
</tbody>
</table>

^a Odds ratios are adjusted for matching factors age and sex, and additionally, for school education, participation in health screening examinations, history of colorectal cancer in a first degree relative, former body mass index, ever regular use of nonsteroidal anti-inflammatory drugs, ever use of hormone replacement therapy, diabetes, physical activity, and alcohol consumption.

^b P-value for interaction of ever regular smoking and utilization of lower GI endoscopy in preceding 10 years.
Table 3. Association of regular smoking and type of colorectal cancer among cases and controls with no previous lower GI endoscopy and among cases and controls with utilization of lower GI endoscopy in the preceding 10 years.

<table>
<thead>
<tr>
<th></th>
<th>No previous lower GI endoscopy</th>
<th>Lower GI endoscopy in the preceding 10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Smokers (%)</td>
<td>Non-smokers (%)</td>
</tr>
<tr>
<td>Current smokers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>219 (14)</td>
<td>824 (54)</td>
</tr>
<tr>
<td>Colon cancer (C18)</td>
<td>195 (15)</td>
<td>646 (48)</td>
</tr>
<tr>
<td>Rectum cancer (C19, C20)</td>
<td>200 (18)</td>
<td>447 (41)</td>
</tr>
<tr>
<td>Stage I+II cancer</td>
<td>216 (17)</td>
<td>552 (43)</td>
</tr>
<tr>
<td>Stage III+IV cancer</td>
<td>175 (16)</td>
<td>538 (48)</td>
</tr>
<tr>
<td>Former smokers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>490 (32)</td>
<td>824 (54)</td>
</tr>
<tr>
<td>Colon cancer (C18)</td>
<td>495 (37)</td>
<td>646 (48)</td>
</tr>
<tr>
<td>Rectum cancer (C19, C20)</td>
<td>437 (40)</td>
<td>447 (41)</td>
</tr>
<tr>
<td>Stage I+II cancer</td>
<td>528 (41)</td>
<td>552 (43)</td>
</tr>
<tr>
<td>Stage III+IV cancer</td>
<td>491 (36)</td>
<td>538 (48)</td>
</tr>
</tbody>
</table>

a Odds ratios are adjusted for matching factors age and sex, and additionally, for school education, participation in health screening examinations, history of colorectal cancer in a first degree relative, former body mass index, ever regular use of nonsteroidal anti-inflammatory drugs, ever use of hormone replacement therapy, diabetes, physical activity, and alcohol consumption.
Figure 1. Simplified model illustrating three ways how utilization of lower GI endoscopy with polypectomy could attenuate associations of a risk factor with colorectal cancer risk: (a) risk factor predominantly increases risk of colorectal adenomas; (b) risk factor predominantly increases risk of progression from adenoma to cancer; (c) risk factor increases both, risk of colorectal adenomas and cancer. In all cases, the adenoma-carcinoma sequence is discontinued through removal of adenomas.

Figure 2. Dose-response analyses of the association of pack-years of smoking and colorectal cancer risk when compared to non-smokers for (a) current smoking and no previous endoscopy, (b) current smoking and endoscopy in the preceding 10 years, (c) former smoking and no previous endoscopy, (d) former smoking and endoscopy in the preceding 10 years. The solid line shows the odds ratio of colorectal cancer as, the dashed lines the 95% confidence limits. The 25th, 50th, and 75th percentile of pack-years of smoking among the controls were used to define the knots (bullet points).
Figure 1

(a) Risk factor → Adenoma → Colorectal cancer

Polypectomy

(b) Adenoma + Risk factor → Colorectal cancer

Polypectomy

(c) Risk factor → Adenoma + Risk factor → Colorectal cancer
Figure 2

(a) No endoscopy group, current smoking

- 10 pack-years: 1.16 (1.00-1.33)
- 20 pack-years: 1.35 (1.02-1.78)
- 30 pack-years: 1.53 (1.15-2.03)
- 40 pack-years: 1.73 (1.31-2.27)

(b) Endoscopy group, current smoking

- 10 pack-years: 1.27 (0.99-1.64)
- 20 pack-years: 1.62 (1.01-2.62)
- 30 pack-years: 1.94 (1.15-3.29)
- 40 pack-years: 2.24 (1.38-3.63)

(c) No endoscopy group, former smoking

- 10 pack-years: 1.27 (1.08-1.48)
- 20 pack-years: 1.44 (1.16-1.80)
- 30 pack-years: 1.46 (1.19-1.80)
- 40 pack-years: 1.48 (1.18-1.86)

(d) No endoscopy group, former smoking

- 10 pack-years: 1.27 (1.08-1.48)
- 20 pack-years: 1.44 (1.16-1.80)
- 30 pack-years: 1.46 (1.19-1.80)
- 40 pack-years: 1.48 (1.18-1.86)
Cancer Epidemiology, Biomarkers & Prevention

Smoking, lower gastrointestinal endoscopy, and risk for colorectal cancer

Cancer Epidemiol Biomarkers Prev Published OnlineFirst January 8, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-13-0729-T

Supplementary Material
Access the most recent supplemental material at:
http://cebp.aacrjournals.org/content/suppl/2014/01/09/1055-9965.EPI-13-0729-T.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.