H. pylori and colorectal cancer risk - Letter -

Jannis Kountouras, Nikolaos Kapetanakis, Christos Zavos, Stergios A. Polyzos, Elisabeth Vardaka, Panagiotis Katsinelos, Iordanis Romiopoulos, Kyriaki Anastasiadou, Nikolaos Giorgakis, Christina Nikolaidou, Ioannis Venizelos

Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece

Key words: Helicobacter pylori; colorectal cancer; biomarkers; oncogenes; cancer stem cell; bone marrow-derived stem cells

Funding sources: None
Conflicts of interest: None

Please address correspondence to:
Jannis Kountouras, MD, PhD
Professor of Medicine
8 Fanariou St, Byzantio
551 33, Thessaloniki, Macedonia
Greece
Tel: +30-2310-892238, Fax: +30-2310-992794
E-mail: jannis@auth.gr
Dear Editor,

Epplein and colleagues (1) reported that: the overall *Helicobacter pylori* (*Hp*) seropositivity was not associated with colorectal cancer (CRC) risk; and seropositivity to specific *Hp* proteins, particularly the toxin VacA antibodies may be associated with a higher risk of CRC and right-sided colon cancers (R-CCs).

Remarkably, the serological test does not discriminate between current and past infections and, apart from past infections that may even be more relevant for oncogenesis, such a distinction is essential because only current *Hp* infection (*Hp*-I) induces humoral and cellular immune responses that produce or perpetuate chronic inflammatory processes in gastrointestinal tract with potential oncogenic sequelae; many neoplasms including colorectal neoplasms arise at the sites of chronic inflammation and infection (2,3).

Based on histology for documentation of current *Hp*-I, our series in 50 CRC patients, 25 patients with colorectal adenomas (CRA) and 10 controls, showed significantly higher *Hp*-I presence in CRA (68%) and CRC (84%) groups than controls (30%) (4). Remarkably, *Hp* presence was documented by immunohistochemical stain in CRA and CRC tissues (4,5).

Presence of *Hp*-I with accompanying immunohistochemical expression of CD44 [indicator of cancer stem cells (CSCs) and/or bone marrow-derived stem cells (BMDSCs)] in biopsy specimens was found in a high proportion of CRA patients accompanied with moderate/severe dysplasia (88%) and CRC patients with moderate/severe degree of malignancy (91%). Comparable pictures were also obtained for proliferation marker Ki-67, anti-apoptotic Bcl-2 and CD45 (assessing mainly T and B lymphocytes locally) immunohistochemical expressions (4,5); these mediators might also serve as risk *Hp* biomarkers involved in the sequence: normal colon epithelium-CRA-CRC development/progression.

Considering the mechanisms underlying the *Hp*-I involvement in the aforementioned sequence, apart from left colon limited oncogenic actions of *Hp*-
induced gastrin, also mentioned by the authors (1), our studies indicate that \(Hp-l \) may be involved in colon carcinogenesis by: inducing a possible chronic inflammatory mucosal damage, comparable to upper gastrointestinal tract (UGT); stimulating CSCs or recruiting BMDSCs, similar to UGT \(Hp-l \)-associated chronic inflammation, metaplasia, dysplasia and BMDSCs recruitment that may facilitate tumor formation/progression in animal models and humans; and affecting oncogenes and immune surveillance processes (4,5).

Finally, the following concept regarding the VacA antibody association with R-CCs observed by the authors (1) might be considered: since R-CCs have higher distant metastases than left-sided CCs, circulation of activated monocytes (possibly infected with \(Hp \) due to defective autophagy) might lead to potential \(Hp \)-related metastatic disease (6); VacA promotes \(Hp \) intracellular survival and modulates host immune responses.

References

