Title: A sex-specific association between a 15q25 variant and upper aerodigestive tract cancers

Dan Chen¹, Therese Truong¹, Valerie Gaborieau¹, Graham Byrnes¹, Amelie Chabrier¹, Shu-chun Chuang¹, Andrew F. Olshan²,³, Mark C. Weissler⁴, Jingchun Luo⁵, Marjorie Romkes⁶, Shama Buch⁶, Tomoko Nukui⁶, Silvia Franceschi¹, Rolando Herrero⁷, Renato Talamini⁸, Karl T Kelsey⁹, Brock Christensen⁹, Mike McClean¹⁰, Martin Lacco¹¹, Johannes J Mann¹¹, Wilbert H. M. Peters¹², Jan Lubiński¹³, Joanna Trubicka¹³, Marcin Lener¹³, Joshua E. Muscat¹⁴, Philip Lazarus¹⁴, Qingyi Wei¹⁵, Erich M. Sturgis¹⁵, Zuo-Feng Zhang¹⁶, Shen-Chih Chang¹⁶, Renyi Wang¹⁶, Stephen M. Schwartz¹⁷, Chu Chen¹⁷, Simone Benhamou¹⁸,¹⁹, Pagona Lagiou²⁰, Ivana Holcátova²¹, Lorenzo Richiardi²², Kristina Kjaerheim²³, Antonio Agudo²⁴, Xavier Castellsague²⁴,²⁵, Tatiana V. Macfarlane²⁶, Luigi Barzan²⁷, Cristina Canova²⁸,²⁹, Nalin S Thakker ³⁰, David I Conway³¹, Ariana Znaor³², Claire M. Healy³³, Wolfgang Ahrens³⁴, David Zaridze³⁵, Neolina Szeszenia-Dabrowska³⁶, Jolanta Lissowska³⁷, Eleonora Fabianova³⁸, Alexandru Bucur³⁹, Vladimir Bencko⁴¹, Lenka Foretova⁴⁰, Vladimir Janout⁴¹, Maria Paula Curado³, Sergio Kolfman⁴², Ana Menezes⁴³, Victor Wünsch-Filho⁴⁴, José Eluf Neto⁴⁴, Leticia Fernandez⁴⁵, Stefania Boccia⁴⁶,⁴⁷, Mia Hashibe¹,⁴⁸, Richard B. Hayes⁴⁹, Paolo Boffetta¹,⁵⁰,⁵¹, Paul Brennan¹, James D. McKay¹.

1. International Agency for Research on Cancer (IARC), Lyon, France
2. Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
3. School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
4. Otolaryngology/Head and Neck Surgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
5. Lineberger Comprehensive Cancer Site, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
6. University of Pittsburgh, Pittsburgh, USA
7. Instituto de Investigación Epidemiológica, San José, Costa Rica
8. National Cancer Institute, IRCSS, Aviano, Italy
9. Brown University, Providence, RI, USA
10. Boston University School of Public Health, Boston, USA
11. Dept. of Otorhinolaryngology and Head and Neck Surgery, Maastricht University Medical Site, The Netherlands
12. Dept. of Gastroenterology, Radboud University Nijmegen Medical Site, the Netherlands
13. Pomeranian Medical University, Department of Genetics and Pathomorphology, International Hereditary Cancer Site, Szczecin, Poland
14. Penn State College of Medicine, Hershey, PA, USA
15. University of Texas M. D. Anderson Cancer Site, Houston, Texas, USA
16. University of California, Los Angeles, School of Public Health, Los Angeles, CA, USA
17. Fred Hutchinson Cancer Research Site, Seattle, WA, USA
18. INSERM U946, Paris, France
19. CNRS UMR8200, Gustave Roussy Institute, Villejuif, France
20. University of Athens School of Medicine, Athens, Greece
21. Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
22. Unit of Cancer Epidemiology, University of Turin, Turin, Italy
23. Cancer Registry of Norway, Oslo, Norway
24. Institut Català d’Oncologia (ICO), Barcelona, Spain
25. Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiologia y Salud Publica - CIBERESP), Spain
26. School of Medicine and Dentistry University of Aberdeen, Aberdeen, UK
27. General Hospital of Pordenone, Pordenone, Italy
28. Department of Environmental Medicine and Public Health, University of Padova, Padova, Italy
29. Respiratory Epidemiology and Public Health, National Heart and Lung Institute, Imperial College, London, UK
30. University of Manchester, School of Dentistry, Manchester, UK
31. University of Glasgow Dental School, Glasgow, Scotland
32. Croatian National Cancer Registry, Croatian National Institute of Public Health, Zagreb, Croatia
33. Trinity College School of Dental Science, Dublin, Ireland
34. Bremen Institute for Prevention Research and Social Medicine (BIPS), University of Bremen, Bremen, Germany
35. Institute of Carcinogenesis, Cancer Research Site, Moscow, Russia
36. Department of Epidemiology, Institute of Occupational Medicine, Lodz, Poland
37. The M. Sklodowska-Curie Memorial Cancer Site and Institute of Oncology, Warsaw, Poland
38. Regional Authority of Public Health, Banská Bystrica, Slovakia
39. Institute of Public Health, Bucharest, Romania
40. Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
41. Palacky University, Olomouc, Czech Republic
42. Escola Nacional de Suade Publica, Rio de Janeiro, Brazil
43. Universidade Federal de Pelotas, Pelotas, Brazil
44. Universidade de Sao Paulo, Sao Paulo, Brazil
45. Institute of Oncology and Radiobiology, Havana, Cuba
46. Genetic Epidemiology and Public Health Genomics Unit, Institute of Hygiene, Università Cattolica del Sacro Cuore, Rome, Italy
47. San Raffaele Pisana, Rome, Italy
48. University of Utah, School of Medicine, Salt Lake City, USA
49. NYU Langone Medical Center New York, USA
50. The Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA
51. International Prevention Research Institute, Lyon, France

Financial support: Funding for study coordination, genotyping of replication studies and statistical analysis was provided by the US NCI (R01 CA092039 05/05S1) and the NICDR (1R03DE020116-01).

Corresponding author: James D. McKay, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France. Email: mckay@iarc.fr

Running Title: Sex-specific association of 15q25 variant with UADT cancers

Key words: genetic variants; 15q25; nicotinic acetylcholine receptor; upper aerodigestive tract cancers; cigarettes per day
Abstract

Background: Sequence variants located at 15q25 have been associated with lung cancer and propensity to smoke. We recently reported an association between rs16969968 and risk of upper aerodigestive tract (UADT) cancers (oral cavity, oropharynx, hypopharynx, larynx and esophagus) in women (odds ratio (OR) =1.24, \(P=0.003 \)) with little effect in men (OR=1.04, \(P=0.35 \)).

Methods: In a coordinated genotyping study within the International Head and Neck Cancer Epidemiology (INHANCE) consortium, we have sought to replicate these findings in an additional 4,604 cases and 6,239 controls from 10 independent UADT cancer case-control studies.

Results: rs16969968 was again associated with UADT cancers in women (OR=1.21, 95% confidence interval(CI)=1.08-1.36, \(P=0.001 \)) and a similar lack of observed effect in men (OR=1.02, 95%CI=0.95-1.09, \(P=0.66 \)) (\(P \)-heterogeneity=0.01). In a pooled analysis of the original and current studies, totaling 8,572 UADT cancer cases and 11,558 controls, the association was observed among females (OR=1.22, 95%CI=1.12-1.34, \(P=7x10^{-6} \)) but not males (OR=1.02, 95%CI=0.97-1.08, \(P=0.35 \)) (\(P \)-heterogeneity=6x10^{-4}). There was little evidence for a sex difference in the association between this variant and cigarettes smoked per day, with male and female rs16969968 variant carriers smoking approximately the same amount more in the 11,991 ever smokers in the pooled analysis of the 14 studies (\(P \)-heterogeneity=0.86).

Conclusions: This study has confirmed a sex difference in the association between the 15q25 variant rs16969968 and UADT cancers.

Impact: Further research is warranted to elucidate the mechanisms underlying these observations.
Introduction

Exposure to alcohol and tobacco are the major risk factors for upper aerodigestive tract (UADT) cancers (cancers of the oral cavity, oropharynx, hypopharynx, larynx, and esophagus) in Europe and America (1).

Common genetic variants located at chromosome 15q25, a locus that contains three genes that encode nicotinic acetylcholine receptor (nAChR) subunits (*CHRNA5*, *CHRNA3* and *CHRNB4*), have been implicated in the risk of lung cancer, chronic obstructive pulmonary disease (COPD) and peripheral arterial disease (2-5). The same variants are associated with increased propensity to smoke tobacco (4,6-7), leading to the hypothesis that this might explain the associations noted with pathologies linked to tobacco exposure (4,8). Others have suggested that these variants may have additional independent effects (2,5,9-11). In a recent study of 3,968 UADT cancer cases and 5,319 controls (10), we observed that there was statistically significant association between 15q25 variant rs16969968 and risk of UADT cancers in women (OR=1.24, 95% CI=1.08-1.42, *P*=0.003) but not men (OR=1.04, 95%CI=0.96-1.12, *P*=0.35) (*P*-heterogeneity=0.03). In the present study, we sought to validate these findings in an independent series of 4,604 UADT cancer cases and 6,239 controls from 10 UADT cancer case-control studies participating in the International Head and Neck Cancer Epidemiology (INHANCE) consortium (12).

Materials and Methods

Study subjects

Ten independent case-control studies of UADT cancers from INHANCE consortium (seven were conducted in America and three in Europe) participated in our present study. Study designs and population characteristics have been described in more detail previously (12-15), and are briefly described in Table 1 and Supplementary Table 1. All the subjects included in the pooled analysis were of self-reported European ancestry. As previously described (12), all INHANCE studies have extensive
information on tumor site and histology, as well as lifestyle characteristics. The majority of hospital-based studies excluded controls with tobacco-related pathologies as a control source (13-15). The exceptions were the Penn State, Rome, MD Anderson and Pittsburgh studies that did not exclude tobacco-related pathologies specifically. Written informed consent was obtained from all study subjects, and studies were approved by the institutional review boards at each study center. Analysis was restricted to squamous cell carcinomas.

Genotyping and quality control

Genotyping of the 15q25 variant, rs16969968, was carried out in eight genotyping laboratories (Supplementary Table 1) using the TaqMan genotyping platform (rs16969968 Taqman assay primers GAGTGGTAGTGGACCAAAATCTTCT and ACCTCACGGACATCATTTTCTT probes VIC-MGB-CTGCGCTCAATTCC, FAM-MGB-CTGCGCTCGATTCC). A common series of 90 standard DNAs were genotyped at each laboratory to ensure the quality and comparability of the genotyping results across the different studies. The overall concordance with the consensus genotype and the genotypes from the eight laboratories for the standardized DNAs was 99.86%. Genotype success rate was greater than 95.87% across each site and genotype distributions were consistent with that expected by Hardy–Weinberg equilibrium (HWE).

Statistical analysis

The association between rs16969968 and UADT cancer risk was estimated by odds ratio (ORs) and 95% confidence intervals (CIs) per allele (under log-additive model) and genotype derived from multivariate unconditional logistic regression, with age, sex and study site (or country when appropriate) included in the model as covariates. Heterogeneity of ORs was assessed using the Cochran’s Q test. The association between the rs16969968 variant allele and number of cigarettes smoked per day (CPD) was carried out in ever smokers using multivariate linear regression on log transformed data. Mean values and 95% CIs were calculated in the combined initial and present data sets with adjustment for age, sex and study site (and case/control status when appropriate). Differential effect of this SNP on
CPD between sexes was evaluated in a linear regression analysis by including a genotype by sex interaction term.

Results

In the independent series of 4,604 UADT cancer cases and 6,239 controls, the association between rs16969968 and UADT cancers was found in women (OR=1.21, 95%CI=1.08-1.36, \(P=0.001\)), with little evidence for association in men (OR=1.02, 95%CI=0.95-1.09, \(P=0.66\)) (\(P\)-heterogeneity=0.01) (Figure 1). This is consistent with the observation in the initial study (OR=1.24, 95%CI=1.08-1.42 for women; OR=1.04, 95%CI=0.96-1.12 for men; \(P\)-heterogeneity=0.03) (10). To further evaluate this genetic effect, we pooled individual level data from the initial study and the 10 independent studies presented here, making for a total of 8,572 UADT cancer cases and 11,558 controls from 14 studies. We then conducted stratified analysis in both women and men (Figure 1). In the combined series, rs16969968 was associated with UADT cancers only in females (Females: OR=1.22, 95%CI=1.12-1.34, \(P=7x10^{-6}\); Males: OR=1.02, 95%CI=0.97-1.08, \(P=0.35\); \(P\)-heterogeneity=6x10\(^{-4}\)). In women the association of rs16969968 with UADT cancer risk was relatively consistent among subgroups stratified by smoking status, alcohol consumption and age. Significant heterogeneity was noted by UADT cancer subsite (\(P\)-heterogeneity=0.02), with the association strongest among female laryngeal cancer (OR=1.40, 95%CI=1.21-1.61, \(P=6x10^{-6}\)) and absent in female cancers of the oropharynx (OR=1.00, 95%CI=0.84-1.18, \(P=0.97\)) and hypopharynx (OR=0.95, 95%CI=0.63-1.43, \(P=0.80\)). Evidence for association was also present in female never smokers (OR=1.18, 95%CI=1.00-1.39, \(P=0.05\)) and never drinkers (OR=1.35, 95%CI=1.14-1.61, \(P=6x10^{-4}\)). In contrast, in men there was little evidence for association between rs16969968 and UADT cancers in any stratum.

The rs16969968 variant has been consistently associated with propensity to smoke cigarettes (particularly CPD) (4,6-7), we therefore examined whether rs16969968 was associated with CPD among 11,991 ever smokers included in the combined initial and present data sets, as well as in UADT cancer
cases and controls separately and among males and females (Table 2). In the combined series the rs16969968 minor allele was associated with CPD ($P=1\times10^{-6}$), with rare homozygotes ever smoking carriers smoking 1.72 CPD more than common homozygotes. There was little evidence for a sex difference in the effect of the rs16969968 variant on CPD, with male and female smoking variant carriers smoking approximately the same amount more (male and female rare homozygotes smoked 1.79 and 1.29 CPD more than common homozygotes, respectively) (P-heterogeneity=0.86) (Table 2). Similar patterns were observed in cases and controls when analyzed separately (P-heterogeneity=0.51 and 0.99, respectively).

Discussion

This study has replicated our previous observation of a sex difference in the association between the 15q25 variant rs16969968 and UADT cancers. In a combined analysis, the association was highly significant in women ($P=7\times10^{-6}$) but not men ($P=0.35$) with strong evidence for heterogeneity (P-heterogeneity=10^{-4}) arguing against a chance finding. Under the hypothesis that the association between the rs16969968 variant and tobacco related pathologies is mediated by this variant's effect on propensity to smoke, an association in UADT cancers, and particularly in laryngeal cancers, would be expected. However, the observation of a sex difference in the association with UADT cancers is intriguing for several reasons. Firstly, extrapolating from the observed effect of rs16969968 on CPD, only a small OR of approximately 1.02 for UADT cancers is expected in both men and women (Supplementary method and Supplementary Table 2). This corresponds closely with observation of association between UADT cancers and rs16969968 in men but risk observed in women is much higher. Secondly, as reported here (Table 2) and elsewhere (4,6), there is little evidence for a sex difference in the association between rs16969968 and CPD. This association could be potentially caused by a sex difference in the association between the 15q25 variant and smoking propensity not captured by the crude smoking measures available to this study. Nevertheless, if this association was caused by such a sex difference in propensity to smoke, one might expect the sex difference in this association to manifest more strongly in
a cancer such as lung cancer, where the risks associated with tobacco consumption are more pronounced. However, to date, there is only inconsistent evidence for a sex difference in the association between this 15q25 variant and lung cancer (9-11). This seems to imply that rs16969968 has additional effects on UADT cancer susceptibility than just increasing propensity to smoke, as has been suggested for lung cancer (2, 9-11).

nAChRs are expressed throughout the UADT, and have been shown to mediate pathobiologic effects of tobacco and nicotine derivatives in the stratified epithelium lining the upper digestive tract (16-19). The rs16969968 SNP causes a change in amino acid 398 from asparagine (encoded by the G allele) to aspartic acid (encoded by A allele) in the second intracellular loop of the a5 subunit, and there is some evidence to suggest that this change alters nAChR function in response to nicotine agonist in vitro (20). However, the functional consequences of this alteration in UADT carcinogenesis remain to be established.

In our study, the strongest association with 15q25 variant was observed among female laryngeal cancer. The male-to-female ratio in laryngeal cancer is 4.7 :1 in America (21) and 11.3 :1 in Europe (22), one of the highest among all cancer sites. It is worth noting that the difference in susceptibility to larynx cancer based on gender has remained unchanged through the years despite the increasing tobacco and alcohol consumption among women. The larynx is influenced by sexual hormones during the fetal development, as well as puberty and adulthood as it is subject to laryngeal epithelial layer modifications, cartilage metaplasia, and morphostructural changes (23-24). These considerations, in association with the epidemiological evidence, has led to the speculation that sex hormones might be involved in the carcinogenesis process (25). Our finding of sex-specific effect of 15q25 variant may add to the knowledge in understanding the underlying mechanism of sex difference in susceptibility to laryngeal cancer. Although speculative, there has been some data linking nAChR signaling to sex hormones. For example, some studies have shown that steroid hormones, including progesterone, are noncompetitive antagonists of nAChR (26-27). Additionally, a putative progesterone responsive element was found to be present in the promoter of a5 nAChR subunit, and progesterone has been shown to have an effect on a5
expression level both in vitro and in vivo (28). It is biologically plausible that the interplay between sex hormones and α5-containing nAChR may play a direct or indirect role in mediation of sex difference in susceptibility to laryngeal cancer. Nevertheless, such speculation needs to be further tested in in-depth molecular mechanistic studies in the future.

Several limitations are present in this pooled study. First, the observed sex-specific association could potentially be caused by a difference in variant frequency in controls between sexes (caused by, for example, population stratification or a sex-specific ascertainment bias due to pathology type in hospital-based studies). However, there was little difference in the frequency of rs16969968 variant between male and female controls in any of the studies (Supplementary Table 3). Second, the information on human papillomavirus (HPV) infection, involved in the etiology of UADT cancers, particularly oropharyngeal cancers (29), was not available in our study. Interestingly, there was little evidence for an association between 15q25 variant and oropharyngeal cancer. Further studies including HPV infection status may help to clarify whether the effect of 15q25 variant are different in HPV-positive and HPV-negative oropharyngeal cancers.

In summary, this study has replicated the association between 15q25 variant rs16969968 and risk of UADT cancers in women, particularly prominent for laryngeal cancer. By contrast, there is little effect in men, implying a sex-specific effect. The biological basis for this association remains unclear and additional study appears warranted to further validate and explore these findings.

Acknowledgements

The authors thank all of the participants who took part in this research and the funders and support and technical staff who made this study possible.
References

Table 1. Selected demographic characteristics of study subjects

<table>
<thead>
<tr>
<th>Age group</th>
<th>Combined series Cases</th>
<th>Controls</th>
<th>Women Cases</th>
<th>Controls</th>
<th>Men Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td><50</td>
<td>1624</td>
<td>18.95</td>
<td>2039</td>
<td>17.64</td>
<td>343</td>
<td>17.26</td>
</tr>
<tr>
<td>50-<60</td>
<td>2687</td>
<td>33.45</td>
<td>3838</td>
<td>33.21</td>
<td>571</td>
<td>28.74</td>
</tr>
<tr>
<td>60-<70</td>
<td>2591</td>
<td>30.23</td>
<td>3413</td>
<td>29.53</td>
<td>600</td>
<td>30.20</td>
</tr>
<tr>
<td>≥70</td>
<td>1490</td>
<td>17.38</td>
<td>2268</td>
<td>19.62</td>
<td>473</td>
<td>23.80</td>
</tr>
<tr>
<td>Cancer site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>1968</td>
<td>22.96</td>
<td></td>
<td></td>
<td>605</td>
<td>30.45</td>
</tr>
<tr>
<td>Oropharynx</td>
<td>1930</td>
<td>22.52</td>
<td></td>
<td></td>
<td>398</td>
<td>20.03</td>
</tr>
<tr>
<td>Hypopharynx</td>
<td>440</td>
<td>5.13</td>
<td></td>
<td></td>
<td>57</td>
<td>2.87</td>
</tr>
<tr>
<td>Larynx</td>
<td>2773</td>
<td>32.35</td>
<td></td>
<td></td>
<td>534</td>
<td>26.87</td>
</tr>
<tr>
<td>Esophagus</td>
<td>401</td>
<td>4.68</td>
<td></td>
<td></td>
<td>88</td>
<td>4.43</td>
</tr>
<tr>
<td>Others *</td>
<td>870</td>
<td>10.15</td>
<td></td>
<td></td>
<td>232</td>
<td>11.68</td>
</tr>
<tr>
<td>Missing</td>
<td>190</td>
<td>2.22</td>
<td></td>
<td></td>
<td>73</td>
<td>3.67</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smokers</td>
<td>1093</td>
<td>12.75</td>
<td>3810</td>
<td>32.96</td>
<td>456</td>
<td>22.95</td>
</tr>
<tr>
<td>Former smokers</td>
<td>1965</td>
<td>22.92</td>
<td>3501</td>
<td>30.29</td>
<td>428</td>
<td>21.54</td>
</tr>
<tr>
<td>Current smokers</td>
<td>4562</td>
<td>53.22</td>
<td>2827</td>
<td>24.46</td>
<td>919</td>
<td>46.25</td>
</tr>
<tr>
<td>Former or current smokers</td>
<td>539</td>
<td>6.29</td>
<td>393</td>
<td>3.40</td>
<td>112</td>
<td>5.64</td>
</tr>
<tr>
<td>Missing</td>
<td>413</td>
<td>4.82</td>
<td>1027</td>
<td>8.89</td>
<td>72</td>
<td>3.62</td>
</tr>
<tr>
<td>Alcohol consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never drinkers</td>
<td>884</td>
<td>10.31</td>
<td>1953</td>
<td>16.90</td>
<td>486</td>
<td>24.46</td>
</tr>
<tr>
<td>Ever drinkers</td>
<td>7173</td>
<td>83.68</td>
<td>8282</td>
<td>71.66</td>
<td>1346</td>
<td>67.74</td>
</tr>
<tr>
<td>Missing</td>
<td>515</td>
<td>6.01</td>
<td>1323</td>
<td>11.45</td>
<td>155</td>
<td>7.80</td>
</tr>
<tr>
<td>Total</td>
<td>8,572</td>
<td></td>
<td>11,558</td>
<td></td>
<td>1,987</td>
<td></td>
</tr>
</tbody>
</table>

* Other cancer sites included oral/pharynx cancer NOS or overlapping head and neck cancer.
Table 2. Association between rs16969968 and cigarettes smoked per day

<table>
<thead>
<tr>
<th>Group</th>
<th>Genotype</th>
<th>Cases</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Controls</th>
<th></th>
<th></th>
<th></th>
<th>Overall</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>Mean*</td>
<td>95%CI</td>
<td>n</td>
<td>Mean*</td>
<td>95%CI</td>
<td>n</td>
<td>Mean*</td>
<td>95%CI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined</td>
<td>GG</td>
<td>2632</td>
<td>20.83</td>
<td>20.11-21.55</td>
<td>2636</td>
<td>17.07</td>
<td>16.34-17.80</td>
<td>5268</td>
<td>18.97</td>
<td>18.46-19.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GA</td>
<td>2725</td>
<td>21.24</td>
<td>20.54-21.94</td>
<td>2635</td>
<td>17.43</td>
<td>16.70-17.80</td>
<td>5360</td>
<td>19.33</td>
<td>18.84-19.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-trend</td>
<td>▲</td>
<td>0.02</td>
<td></td>
<td></td>
<td>2 ×10⁻⁵</td>
<td>1×10⁻⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>GG</td>
<td>432</td>
<td>18.53</td>
<td>17.08-19.98</td>
<td>500</td>
<td>13.69</td>
<td>12.41-14.97</td>
<td>932</td>
<td>15.97</td>
<td>15.04-16.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>130</td>
<td>18.80</td>
<td>16.67-20.93</td>
<td>114</td>
<td>15.36</td>
<td>13.24-17.49</td>
<td>244</td>
<td>17.26</td>
<td>15.78-18.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-trend</td>
<td>▲</td>
<td>0.89</td>
<td></td>
<td></td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-trend</td>
<td>▲</td>
<td>0.01</td>
<td></td>
<td></td>
<td>6×10⁻⁵</td>
<td>3×10⁻⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Means were adjusted for age, study site, sex, and case/control status when appropriate in ever smokers only.

† Cigarettes smoked per day was log transformed in linear regression where SNP genotypes were coded as counts of minor allele (0/1/2) adjusting for age, study site, sex, and case/control status when appropriate. For the test of interaction, the interaction term of rs16969968×sex was added to the initial model.
Figure Legend

Figure 1. Forest plots representing the association between rs16969968 and UADT cancer risk in women, men and the combined series, respectively. Unless specified, the ORs, and 95% CIs were derived from the log-additive genetic model with adjustment for age, study site and sex when appropriate. P for heterogeneity was derived from the Cochran’s Q test. The overall OR is shown by the dotted vertical line. For each study among drinkers, individuals were defined as light drinkers if they consumed below the median level of ethanol per day; otherwise they were considered as heavy drinkers.