The Risk of Cervical Cancer in Relation to Serum Concentrations of Folate, Vitamin B₁₂, and Homocysteine¹

Anthony J. Alberg, Jacob Selhub, Keerti V. Shah, Raphael P. Viscidi, George W. Comstock, and Kathy J. Helzlsouer

Departments of Epidemiology [A. J. A., G. W. C., K. J. H.] and Molecular Microbiology and Immunology [K. V. S.], Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland 21205; Human Nutrition Research Center, Tufts University, Boston, Massachusetts 02111 [J. S.]; and Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205 [R. P. V.]

Abstract

Due to its role in the synthesis and repair of DNA, folate may protect against the development of cervical cancer. Prospective data on the possible association between folate and cervical cancer have been lacking. There is also a paucity of prospective evidence concerning the possible associations between cervical cancer and vitamin B₁₂, which shares pathways with folate, and homocysteine, a marker of low B vitamin concentrations. A nested case-control study was conducted to prospectively evaluate the associations between cervical cancer and serum concentrations of folate, vitamin B₁₂, and homocysteine. Among a community-based cohort of women who donated blood in 1974 for a serum bank in Washington County, Maryland, 39 cases of cervical cancer diagnosed between 1975 and mid-1990 were included in the study (13 cases of invasive cervical cancer and 26 cases of carcinoma in situ). Two controls were matched to each case by age, race, and sex. Stored serum from the cases and controls was assayed for folate, B₁₂, and homocysteine concentrations. For folate, adjusted odds ratios were 1.0, 0.62, and 0.60 for the low to high thirds of the serum concentrations, respectively, a trend in the protective direction that was not statistically significant (P for trend = 0.42). Overall, the results for vitamin B₁₂ tended to mimic those for folate, whereas the associations for homocysteine tended to be in the opposite direction. None of the results of this study were statistically significant, but patterns of the associations are in accord with hypothesized mechanistic pathways concerning B vitamins and cervical cancer.

Introduction

One interesting lead to understanding the etiology of cervical cancer has been the possible protective role of folate, one of the B vitamins whose primary sources are fruits and vegetables. The rationale for folate’s possible protection against cervical cancer is based on its roles in DNA synthesis and repairing damaged DNA (1, 2). Folate is involved in DNA methylation, through which it may influence gene stability and expression (2).

Interest in the relationship between folate and pathogenesis of cervical cancer extends at least as far back as 1973, when Whitehead et al. (3) reported that administering folic acid reversed megaloblastic changes in the cervical epithelium that were associated with oral contraceptive use, a finding that Butterworth et al. (4) extended to cervical dysplasia in 1982. Preliminary observations such as these, along with an improved understanding of the role of folate, led to the hypothesis that women with low folate levels may have increased susceptibility to cervical cancer.

Several case-control studies have been conducted to investigate the relation between folate and cervical dysplasia or cervical cancer. These studies have measured folate in different ways, including dietary intake and serum or erythrocyte folate concentrations. The findings are summarized in Table 1. Two of the four studies of dietary intake and cervical dysplasia found a dose-response relationship, as did one of the two carcinoma in situ studies. None of the three investigations of diet and invasive cervical cancer showed a dose-response association with folate intake. Those studies of folate levels in serum, plasma, or RBCs have also had equivocal results. Only one of the five found a protective association, which was an inverse association between RBC folate and cervical dysplasia. Inspection of Table 1 suggests that if it were possible to properly combine the results of all of the studies, the net result would be a slight inverse association of dietary and circulating folate concentrations with cervical dysplasia and neoplasia. Although encouragement from these findings is minimal, there are reasons for additional studies of the folate-cervical cancer relationship. First, none of the previous studies has been prospective. More importantly, folate may inhibit the carcinogenic potential of HPVs,³ possibly by keeping the virus from becoming integrated into genomic DNA (1). In most of the studies, most of the major cervical cancer risk factors were accounted for; however, women were tested for the presence of HPV infection in only five of the studies. The results of the studies with no measure of HPV infection are thus difficult to interpret clearly.

Although the focus has been on folate, the close interrelationship of folate and vitamin B₁₂ in the synthesis, repair, and methylation of DNA suggests that insights might be gained by
Short Communication: B Vitamins and the Risk of Cervical Cancer

Considering both of these B vitamins, B₁₂ is a cofactor for methionine synthase, which catalyzes the conversion of homocysteine to methionine and also controls cellular folate uptake (16). Folate also acts as a cofactor for methionine synthase (17), so both folate and B₁₂ are inversely associated with homocysteine concentrations (17). Homocysteine, which is produced during methionine metabolism (16), could be associated with increased risk of cervical cancer as a marker of low folate and B₁₂ levels (18). The present study was carried out to prospectively assess the risk of cervical cancer in relation to serum folate, vitamin B₁₂, and homocysteine using a nested case-control study design.

Materials and Methods

The resources used to implement this study were the Washington County Serum Bank and the Washington County Cancer Registry. The serum bank was established in 1974, when a community-wide campaign was conducted to collect blood samples for use in biomedical research from adult volunteers in Washington County, Maryland. Serum from these samples has been stored at –70°C. A brief interview at the time of blood donation included sociodemographic information and health-related practices such as cigarette smoking.

The assays for HPV-16 antibodies have been reported in detail elsewhere (21). Briefly, IgG antibodies to virus-like particles of HPV-16 were measured by ELISA. Seropositivity, indicating current or prior infection with HPV-16, was taken to be an absorbance value of 0.20 or more. The assays for HPV-16 antibodies have been reported in detail elsewhere (21). Briefly, IgG antibodies to virus-like particles of HPV-16 were measured by ELISA. Seropositivity, indicating current or prior infection with HPV-16, was taken to be an absorbance value of 0.20 or more.

Statistical Analysis. Serum concentrations were categorized by thirds of the distribution among the controls. Matched ORs for the middle and high thirds relative to the low third were estimated using conditional logistic regression (24). The test for dose-response trend was based on the Likelihood Ratio Test from a conditional logistic regression model with a single quantitative variable entered, coded as the controls’ median

Table 1 Summary of the dose-response associations (ORs) observed between folate and cervical dysplasia, cervical carcinoma *in situ*, and invasive cervical carcinoma in case-control studies

<table>
<thead>
<tr>
<th>First author (year) (ref. no.)</th>
<th>No. of cases/ no. of controls</th>
<th>Categories of dietary intake</th>
<th>Categories of circulating concentrations</th>
<th>Adjusted for*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysplasia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Eewyk (1992) (5)</td>
<td>100/100</td>
<td>1.0 0.8 0.7 0.4</td>
<td>1.0 0.9 1.1 0.3 (serum)</td>
<td>A-G, J, K</td>
</tr>
<tr>
<td>Liu (1993) (6)</td>
<td>257/133</td>
<td>1.0 0.93 1.33 0.67</td>
<td>1.0 0.5 0.6 0.1 (RBC)</td>
<td>A-D, H-J</td>
</tr>
<tr>
<td>Buckley (1992) (7)</td>
<td>42/58</td>
<td>1.0 0.59 0.30</td>
<td></td>
<td>Nothing</td>
</tr>
<tr>
<td>Butterworth (1992) (8)</td>
<td>294/170</td>
<td>1.0 1.40 0.28</td>
<td>1.0 1.0 0.71 — (RBC)</td>
<td>B-D, H, I</td>
</tr>
<tr>
<td>Kanetsky (1998) (9)</td>
<td>32/113</td>
<td>1.0 0.93 0.79 0.73</td>
<td>1.0 0.13 1.50 — (serum)</td>
<td>A, C, E, G, I, L</td>
</tr>
<tr>
<td>Carcinoma in situ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brock (1988) (10)</td>
<td>117/196</td>
<td>1.0 1.8 0.9 1.3</td>
<td>1.0 1.3 0.7 — (RBC)</td>
<td>A-E, L</td>
</tr>
<tr>
<td>Ziegler (1991) (11)</td>
<td>229/502</td>
<td>1.0 0.93 0.79 0.73</td>
<td></td>
<td>A-G</td>
</tr>
<tr>
<td>Invasive cervical carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziegler (1990) (12)</td>
<td>271/502</td>
<td>1.0 0.86 1.02 1.18</td>
<td></td>
<td>A-D, F, G</td>
</tr>
<tr>
<td>Verreault (1989) (13)</td>
<td>189/227</td>
<td>1.0 0.6 1.3 0.8</td>
<td></td>
<td>A-G, L</td>
</tr>
<tr>
<td>Herrero (1991) (14)</td>
<td>748/1441</td>
<td>1.0 0.99 1.00 0.95</td>
<td></td>
<td>A, B, E, G-I</td>
</tr>
<tr>
<td>Potischman (1991) (15)</td>
<td>330/565</td>
<td>1.0 1.01 1.06 1.05 (serum)</td>
<td></td>
<td>A, B, E, G-I</td>
</tr>
</tbody>
</table>

*Referent category.
* Adjusted for age; A, B, sexual activity; C, smoking; D, contraceptive use; E, socioeconomic status; F, history of genital infection; G, time since last Pap smear or frequency of Pap smears; H, parity; I, HPV infection (HPV-16 and/or HPV-18); J, race; K, body mass index; L, total energy.
Results

Average age at study baseline was 38 years for the cases and 37 years for the controls; the average interval from blood donation to diagnosis of the cases was 6 years. Compared with the controls, cases at baseline were more likely to have had less than 12 years of education (OR, 2.5; 95% CL, 1.0, 6.0), to have been smokers (OR, 2.1; 95% CL, 0.9, 4.8), to have been current smokers (OR, 2.4; 95% CL, 0.7, 8.4), and to have been oral contraceptive use (OR, 2.5; 95% CL, 1.0, 6.0), to have been current smokers (OR, 2.4; 95% CL, 0.7, 8.4), and to have been current smokers (OR, 2.1; 95% CL, 0.9, 4.8), to have been current smokers (OR, 2.1; 95% CL, 0.9, 4.8), to have been current smokers (OR, 2.1; 95% CL, 0.9, 4.8), to have been current smokers (OR, 2.1; 95% CL, 0.9, 4.8), to have been current smokers (OR, 2.1; 95% CL, 0.9, 4.8), to have been current smokers (OR, 2.1; 95% CL, 0.9, 4.8)

Discussion

Despite being a small study, the evidence provided does support, albeit to a modest degree, a role for B vitamins in the etiology of cervical cancer. The observed pattern of associations tended to be in accord with the hypothesized mechanistic pathways concerning B vitamins and cervical cancer. The ORs in the protective direction provide some support for folate protecting against cervical cancer. The OR for the highest third of serum B12 was also less than unity, as expected based on its shared role with folate in DNA repair and synthesis. Conversely, the highest levels of serum homocysteine, a marker of low B vitamin concentrations, were associated with a nonsignificantly increased risk of cervical cancer. None of these associations except the trend for homocysteine was statistically significant, but the results for homocysteine were more compatible with a threshold than a dose-response association.

Measurement error needs to be considered in interpreting our results. Oral contraceptive use was measured based on current use at the time of blood donation. HPV infection was determined by serology in the distant past, rather than genotyping HPV types in the cervix, and was limited to HPV-16. Thus, although oral contraceptive use and HPV status were accounted for to some degree, residual confounding due to the misclassification of these factors could still play a role in the observed associations. The likelihood of the limitations in these measures leading to erroneous conclusions is slight, however, given that the associations observed for oral contraceptive use, education, smoking, and HPV-16 infection were in the direction expected based on previous research. Another limitation of the study is that, compared with serum concentrations, measurement of RBC folate is considered a better marker of long-term folate levels (25). The nondifferential misclassification of folate that could result from the use of serum rather than erythrocyte concentrations would be expected to result in more conservative estimates of the association between folate and cervical cancer than may actually exist. Nevertheless, serum and erythrocyte folate concentrations are highly correlated (7), and serum folate concentrations are correlated with concentrations in cervical tissue (26).

Placed in context of the existing evidence, this study adds a piece to the overall puzzle concerning B vitamins and cervical cancer. This was a prospective investigation, allowing assessment of serum folate, B12, and homocysteine status before the development of cervical cancer. Such prospective data are essential for discerning whether a true association exists and only among the carcinoma in situ cases, but this was consistent with chance variation (P for interaction = 0.60).
are needed to augment the results of case-control studies in which exposures have been measured after the diagnosis of cervical cancer. A measure of the study's internal validity is that the observed associations for smoking, oral contraceptive use, education, and HPV-16 infection were in the direction expected based on previous research. Clearly, however, more prospective studies are needed to supply the additional pieces to the puzzle that will eventually resolve the role, if any, of the B vitamins in the etiology of cervical cancer.

Acknowledgments

We thank the anonymous reviewers who provided helpful comments on an earlier version of the manuscript.

References

The Risk of Cervical Cancer in Relation to Serum Concentrations of Folate, Vitamin B_{12}, and Homocysteine

Anthony J. Alberg, Jacob Selhub, Keerti V. Shah, et al.

Updated version: Access the most recent version of this article at:
http://ceb.p.aacajournals.org/content/9/7/761

Cited articles: This article cites 21 articles, 7 of which you can access for free at:
http://ceb.p.aacajournals.org/content/9/7/761.full#ref-list-1

Citing articles: This article has been cited by 11 HighWire-hosted articles. Access the articles at:
http://ceb.p.aacajournals.org/content/9/7/761.full#related-urls

E-mail alerts: Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions: To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions: To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.