Cytochrome P450 2E1 Polymorphism in Gastric Cancer in Brazil: Case-Control Studies of Japanese Brazilians and Non-Japanese Brazilians

Ines Nobuko Nishimoto, Tomoyuki Hanaoka, Haruhiko Sugimura,1 Kiyoko Nagura, Megumi Ihara, Xiao-Jin Li, Tomio Arai, Gerson Shigeaki Hamada, Luis P. Kowalski, and Shoihiro Tsugane

Epidemiology and Biostatistics Division, National Cancer Center Research Institute East, Kashiwa, Chiba, 277-8577 Japan [I. N. T. H., G. S. H., S. T.]; Division of Epidemiology and Biostatistics [I. N. N.]; and Head and Neck Surgery Department [L. P. K.], A. C. Camargo Cancer Hospital, Research Center, São Paulo, SP, 01509-900 Brazil; First Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192 Japan [H. S., K. N., M. I., X-J. L., T. A.]; and Nikkei Disease Prevention Center, Santa Cruz Hospital Research Center, São Paulo, SP, 04122-000 Brazil [G. S. H.]

Abstract
Cytochrome P450 2E1 (Cyp2E1) is involved in the metabolic oxidation of carcinogenic nitroso compounds, including N-nitrosoamines. There is an RsaI polymorphism in the transcriptional regulatory region of this gene, and in vitro evidence suggests that the variant type of this polymorphic site has higher transcriptional activity but less chlorzoxazone-metabolizing activity. Interindividual differences in the metabolic capacity of Cyp2E1 are assumed to be associated with cancer susceptibility, but the results of the previous studies on the relation between Cyp2E1 RsaI polymorphism and cancer susceptibility have been inconsistent.

Two case-control studies of gastric cancer in Japanese Brazilians (96 cases, 192 controls) and Brazilians not of Japanese ancestry (non-Japanese Brazilians; 236 cases, 236 controls) in São Paulo were designed to clarify the role of the Cyp2E1 RsaI genotype in susceptibility to gastric cancer after considering multifactorial environmental influences. The subjects with variant RsaI genotypes amounted to 47% (28 of 59) and 48% (64 of 133), respectively, of the Japanese cases and controls, and 6% (11 of 187) and 10% (19 of 192), respectively, of the non-Japanese cases and controls. As expected, a difference in the distributions of the two groups was observed. The odds ratio of the RsaI variant genotype of Cyp2E1 was 0.46 (95% confidence interval, 0.21–1.04) in the non-Japanese Brazilian population and 0.98 (95% confidence interval, 0.50–1.90) in the Japanese Brazilian population after adjusting for sex, age, tobacco use, and meat consumption. Additional adjustment for potential confounding factors did not change the odds ratio substantially. No significant interactions were observed between the polymorphism and environmental factors. In regard to the histological type of gastric cancer, the variant genotype was significantly more prevalent than the common genotype in Japanese subjects with diffuse type gastric cancer. Our study suggests that the Cyp2E1 RsaI polymorphism is associated with a reduced risk of gastric cancer, although how the assumed increase in Cyp2E1 expression produced by this polymorphism is related to a reduced risk of cancer remains unclear. The observations in this study are consistent with the recent observations of esophageal cancer in endemic areas of China.

Introduction
Searches and assessments of genetic risk markers for common, nongenetic human cancers should take into consideration environmental factors, such as smoking, diet, and other life-style factors. Gastric cancer has usually been considered as highly environmental disease by many epidemiological studies (1–3), although a familial clustering of gastric cancer has been documented (4), and familial gastric cancer attributable to a germ line mutation in E-cadherin has recently been discovered (5). Previous studies of dietary carcinogenesis of gastric cancer have shown that xenobiotics may also play a role (6, 7), e.g., various chemicals (8) and possibly generating DNA-damaging agent(s). Cyp2E1 is naturally ethanol-inducible and is involved in the metabolic oxidation of carcinogenic nitroso compounds, including N-nitrosoamines. N-Nitrosoamines are present in many different environmental factors, e.g., tobacco smoke, and also form endogenously in the stomach (9, 10). Activated nitrosoamines have been related to the development of many
human common cancers including stomach cancer (11). Molecular cloning and the discovery of polymorphism in the regulatory region of the Cyp2E1 gene has tempted many investigators to test the hypothesis that the Cyp2E1 genotype is related to its metabolic power, and in turn, to individual susceptibility to human cancer. The results of previous studies, however, have not been consistent and ethnic difference has been reported (12). Reviewing the ambiguity in these previous case-control studies, we reasoned that it was probably attributable to the lack of consideration of environmental factors, especially dietary factors, in the case-control data sets, in studies of digestive tract cancers. Gastric cancer mortality among Japanese and descendants of Japanese living in São Paulo is as high as in residents of Japan, and it is 50% higher than that of non-Japanese Brazilians (13, 14). In this study, we included multifactorial environmental factors, such as dietary factors assessed by a food frequency questionnaire, in a genotyping study in the two hospital-based case-control studies of gastric cancer, composed of Japanese Brazilians and non-Japanese Brazilians living in São Paulo to clarify the role of the Cyp2E1 Rsal genotype in susceptibility to gastric cancer. Although Cyp2E1 is known to be responsible for metabolizing chemicals in the food, no studies have ever incorporated dietary factors in the assessment of the polymorphism of this gene.

Subjects and Methods

Subject Population. This hospital-based case-control study of gastric cancer was carried out in the city of São Paulo, Brazil, from June 1991 to June 1994. All of the eligible patients living in São Paulo, Japanese Brazilians, second-generation Japanese Brazilians and non-Japanese Brazilians, were interviewed by using a questionnaire that included personal, social, and demographic characteristics, personal and family medical history, tobacco and alcohol use, and frequency of consumption for about thirty common food items. Informed consent was obtained and blood samples were collected from all of the case-control matched pairs. The protocol was approved by the Institutional Review Board of each participating institution, and informed consent was obtained from each case-control study patient.

Cases. Potentially eligible case-controls were defined as Japanese-Brazilian and non-Japanese Brazilian patients with newly diagnosed malignant neoplasms of the stomach at 13 collaborating hospitals. A total of 101 cases in Japanese Brazilians were selected, but 5 of them were excluded—2 cases because of a lack of histological confirmation and 3 because of gastritis—so that ultimately 96 cases (60 men and 36 women), ages 37 to 89 years old, were enrolled as participants in this study.

Another set of 250 non-Japanese-Brazilian patients were potentially selected in the same hospitals as the index cases. The same questionnaire was used for cases and controls, Japanese Brazilians and non-Japanese Brazilians.

Sample Collection and DNA Extraction. A 10-ml sample of peripheral venous blood was collected in heparinized tubes. Buffy coat was removed by the personnel of each hospital by centrifugation and stored at −80°C until analyzed. Genomic high-molecular-weight DNA was extracted with a DNA extraction kit (Wako, Osaka, Japan).

Polymorphism Analysis. Rsal genotyping: A set of primers for detection of polymorphism in the regulatory region of Cyp2E1 was designed as reported previously (15). Briefly, the primer set 5′-TTCATTCTTGTTCATTAACTGG-3′ and 5′-CTCAGTCAGTGCTACATTTGCT-3′ yielded a 412-bp fragment, which generated fragments with 360, 50, and 410 bp by digestion with Rsal (Toyobo, Kyoto, Japan). Rsal-site-homozygously-absent individuals have a single 412-bp band (A allele homozygous, A/A), whereas Rsal-site-homozygous have a smaller-sized band (360 bp) in case 50-bp fragment has run out (homozygous type C/C genotype). Heterozygous cases should have two bands, 410-bp and 360-bp, after a 50-bp fragment has run out (genotype C/A).

For DNAs of low amplification quality, we used the primers 5′-GGTGCAGTGTAGGTCACGC-3′ and 5′-TTCATTTCTTGTTCTAATTGGG-3′ for secondary PCR, as reported previously (16, 17). The consistency of the genotype revealed by this alternative primer set was monitored in the 10 randomly selected DNA samples and was confirmed to be consistent (data, not shown). Genotyping was completed in 59 (61%) Japanese cases and 133 (69%) Brazilian controls and in 189 (80%) Brazilian cases and 191 (81%) Brazilian controls. Demographic characteristics of the genotyped subjects were almost the same as the whole subjects.

It was more difficult to completely control the quality of the buffy-coat samples, especially when the blood was collected at the local clinics far from the central hospitals. The reason for the low DNA quantity was mainly loss of nuclear DNA coating on the red corpuscles. We performed our assays blindly to exclude the...
possibility of any influence of the low-quality blood samples in which PCR was unsuccessful. The basic characteristics of the subjects whose samples were available for the polymorphism analysis were comparable with those of the parent group.

Statistical Analysis. To estimate the association between gastric cancer risk and Cyp2E1 Rsal polymorphism, crude and adjusted ORs with 95% CIs were determined by using unconditional and conditional logistic regression models (18) performed by statistical software SAS (SAS Institute, Cary, NC).

Smoking Habit. We defined “nonsmokers” as persons who had never smoked at any time in their life, and “smokers” as persons who had smoked in the past or who were current smokers. Tobacco consumption was measured in pack-years as the cumulative exposure equivalent to packs-smoked-per-day times the number-of-years of smoking. We considered 20 commercially manufactured cigarettes (one pack), 4 hand-rolled black-tobacco cigarettes, 4 cigars, and 5 pipefuls of regular pipe tobacco to be equivalent (19).

Dietary Record. The frequency of intake of approximately 40 food items, including meat, vegetables, fruit, tea, and other foods was grouped into four categories: less than once a week, 1–2 times a week, 3–4 times a week, and almost every day. This is a simple food frequency questionnaire, and validation was not done.

Histological Classification of Stomach Cancer. Pathology reports and slides of the cases were obtained and reviewed independently and blindly by two pathologists (Iriya, Y., and Sugimura, H.J.). Histological classification of the stomach cancers was performed according to the Japanese classification system (20) and categorized into two types based on Lauren classification (21).

Results

Table 1 summarizes some demographic characteristics and life-style factors of the study subjects as a whole. Gender, race, age, and percentage of daily drinkers were almost the same in the cases and controls among both the Japanese and the non-Japanese Brazilians. In the Brazilian population, the percentage of current smokers was higher than that of the control group, but the percentage in the Japanese group was comparable with that of the control group. The frequency of meat consumption was higher in the Japanese population compared with that of the Japanese controls. The distributions of these exposure and demographic data were not different in the subjects that were not genotyped. On the basis of these observations, smoking and meat consumption were included in the cancer risk estimation of current smokers was higher than that of the control group, but the percentage in the Japanese group was comparable with that of the control group. The frequency of meat consumption was higher in the Japanese population compared with that of the Japanese controls. The distributions of these exposure and demographic data were not different in the subjects that were not genotyped. On the basis of these observations, smoking and meat consumption were included in the cancer risk estimation. The relationships between gastric cancer and life-style factors or the consumption of common food items in these subjects has been assessed elsewhere. 5

Table 2 shows the frequency distribution of Cyp2E1 Rsal genotypes and estimated ORs for gastric cancer. There were very few patients in the homozygous variant allele (A/A) group, and, therefore, the comparison was made by combined prevalence of heterozygotes (C/A) and homozygotes (A/A) for the variant genotype group (C/A + A/A). The ORs for stomach cancer of grouped genotype (C/A + A/A) versus genotype C/C, a reference, are shown. The significant difference in distribution between the two ethnicities is clear from Table 2.
regression analysis, using the \C/C type as a reference, disclosed that after adjusting for sex, age, and tobacco and meat consumption, the OR in Japanese Brazilians was 0.98 (95\% CI, 0.50–1.90), and the OR in non-Japanese Brazilians was 0.46 (95\% CI, 0.21–1.04). Because the genotyping of some DNA samples was not completed, we performed a conditional logistic regression analysis for the remaining matched pairs: 52 matched pairs for cases of Japanese Brazilians and their descendents and 150 pairs for non-Japanese Brazilians. The crude ORs by conditional logistic regression analysis were 0.77 (95\% CI, 0.36–1.62) in the Japanese Brazilians and 0.60 (95\% CI, 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians. Reduced ORs were also observed after adjustment for tobacco and meat consumption alone: 0.7 (95\% CI, 0.30–1.62) in the Japanese Brazilians and 0.25–1.27) in the non-Japanese Brazilians.
(26) but failed to find a positive association with Japanese lung cancer (30). Hamada et al. rejected the hypothesis of the contribution of RsaI genotype in a Brazilian lung cancer case-control study (16), and Ikawa et al. could not confirm the association with lung cancer in Japanese patients (31), although the statistical power of these studies was insufficient. Hirvonén et al. also reported a lack of sufficient numbers of variant RsaI allele in a Finnish population and no association with lung cancer there (32).

Because Cyp2E1 is responsible for catalyzing procarcinogens in food (22) as well as in tobacco smoke, digestive tract cancers are also a reasonable subject for evaluation of this genetic risk attributable to Cyp2E1 polymorphism. Morita et al. found no correlations between RsaI polymorphism and Japanese esophageal cancer (33), and Kato et al. (34) failed to detect any association between RsaI genotype and stomach cancer. Hung et al. reported an association of variant RsaI allele and oral cancer risk in the population that did not chew betel quid (35). By contrast, Lin et al. (36) reported a decreased risk of the RsaI variant genotype for esophageal cancer in an endemic area of China. The conclusion of Lin et al. is contrary to the hypothesis by Hayashi et al., a higher transcription level of a less prevalent genotype (27) but is consistent with the newly identified in vitro difference, that is, lower metabolic capacity for chlorozoxazone hydroxylation of the less prevalent allele (37). Le Marchand et al. also reported the protective contribution of homozygous RsaI variant to lung cancer in a Hawaiian population (38). In any event, the genotype-phenotype relationship of this gene has been a matter of controversy. These two mechanistic bases are not mutually exclusive and well-designed epidemiological studies would identify which one is true for human carcinogenesis. Our observation is paradoxical in terms of transcription-activity difference between two genotypes. Metabolic activity itself may be more attributable to individual predisposition in epidemiological setting.

As far as we know, few studies have demonstrated the protective effect of the variant allele of Cyp2E1 against susceptibility to any human cancer. Only the study conducted in Linxian, China (36) supports this hypothesis (37). Because the enzyme functions in the body, in which it interacts with various extrinsic chemicals, it seems quite reasonable to evaluate the previous studies from the standpoint of exposure risk factors. Lin et al. (36) reported that a Cyp2E1 variant allele is apparently a protective allele for esophageal cancer and severe esophageal hyperplasia, a possible precancerous lesion in that area. Because that region is a well-known endemic area for esophageal cancer, the shared environmental exposure (food) may mask the more subtle individual difference in the other aspects of life-style. Actually the suspected procarcinogens known to induce esophageal cancer in rodents are in the everyday diet of the people there (39, 40).

Although we failed to obtain a statistically significant OR, a subgroup analysis of non-Japanese Brazilians suggested that the protective role of the Cyp2E1 A allele is more effective when exposure to the presumed carcinogens in the meat is minimal. In other words, the effects of the variant type may be overridden by higher environmental chemical exposure. However, similar results regarding meat consumption were not obtained in the Japanese-Brazilian population.

There has been a few studies on genetic susceptibility to gastric cancer. Kato et al. (41) reported no association between the Rsal genotype and gastric cancer in an age-matched case-control study. However, as mentioned previously, their study recruited outpatients in the same hospital, and the dietary record has not been included in the calculations. Therefore, we cannot compare our results directly with theirs.

The prevalence of variant genotypes was different for histological subtypes of gastric cancer. These differences have also been observed in our Japanese gastric cancer cases. These findings are intriguing inasmuch as some investigators have suggested that the two histological subtypes of gastric cancer have a different etiology on the observation that the prevalence of intestinal gastric cancer is decreasing in Scandinavia (42).

Our study also suggests that the Cyp2E1 Rsal variant genotype is associated with a reduced risk of upper gastrointestinal tract cancers and is the first case-control study of genetic markers for gastric cancer to include life-style-related information, such as diet. Recently Zheng et al. (43) succeeded in detecting a NATI genotype contribution to breast cancer risk in subjects who were frequent meat consumers. Thus, our results also verify the strategic merit of this type of study design, that is, genotype assessment that incorporates environmental factors, to evaluate the genetic risk for common cancer.

A recent report (44) supports the finding that the rare Cyp2E1 allele is associated with a decreased enzyme activity adding biological plausibility to the protective effect observed in this study. However, the relationship between the polymorphism and digestive tract cancers is still controversial. Because Cyp2E1 is an inducible gene, past exposure must also be examined, and retrospective case-control studies have limitations in estimating the past dietary record. Prospective studies are needed to explore the relationship between Cyp2E1 polymorphism and gastric cancer.

Acknowledgments

We are grateful to the participants in the “São Paulo-Japan Gastric Cancer Study Group”: R. G. Bevilacqua; M. S. Oyafuso; R. S. O. Filho; D. Castanheira; B. S. Lessa; Y. Menezes; C. A. M. Fonseca; A. J. T. Nigro; C. A. Malheiro; G. C. Santo; C. Kobata; A. C. Godoy; J. P. A. Birindelli; L. A. Soares; J. G. Rodrigues; K. Iriy; Y. Iriy; V. N. Silveira; I. T. Soubhia; V. N. Silveira; L. T. Hort; J. K. Nakaschi; M. Akamine; M. Matsuda; J. P. A. Freitas; T. Tomishige; P. Kazah. We thank Raimunda N. Pereira, Julia M. F. Toyoda, and Arlete B. Robbo for assistance with the field work; and we are grateful to Dr. Shunji Kato for critical comments on the manuscript.

References

17. Blomeke, B., Bennett, W. P., Harris, C. C., and Shields, P. G. Serum, plasma and parafin- embedded tissues as sources of DNA for studying cancer suscepti-

23. Yang, C., and Smith, T. Mechanisms of nitrosamine bioactivation and car-

24. Yang, M., Yamamura, K., Yan, Y., Fukumachi, Y., Hirano, T., Kawa-
moto, T., and Higashi, K. Studies on the microsomal cytochrome P450s in the livers of rats resistant and sensitive to the 3-

28. Uematsu, F., Ikawa, S., Kikuchi, H., Sagami, I., Kanamaru, R., Abe, T., Satoh, K., Motomiya, M., and Watanabe, M. Restriction fragment length poly-
Cytochrome P450 2E1 Polymorphism in Gastric Cancer in Brazil: Case-Control Studies of Japanese Brazilians and Non-Japanese Brazilians

Ines Nobuko Nishimoto, Tomoyuki Hanaoka, Haruhiko Sugimura, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/9/7/675

Cited articles
This article cites 36 articles, 13 of which you can access for free at:
http://cebp.aacrjournals.org/content/9/7/675.full.html#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
/content/9/7/675.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.