Lewis Antigen Alterations in a Population at High Risk of Stomach Cancer

Julio Torrado, Martyn Plummer, Jorge Vivas, Jone Garay, Gladys Lopez, Simon Peraza, Elsa Carillo, Walter Oliver, and Nubia Muñoz

Abstract
Anomalous Lewisα antigen and sulfomucin expression are considered as markers of progression in precursor lesions of gastric cancer. Additionally, Lewis antigen and secretor phenotype have been related to Helicobacter pylori infection and gastric epithelial damage. The two objectives of this study were to correlate Lewis antigen alterations with histochemical changes and to explore the relationship between Lewis and secretor phenotypes and gastric epithelial damage related to H. pylori infection. The study subjects were selected from a chemoprevention trial in Tachira State, Venezuela, an area with a high risk of gastric cancer.

Introduction
Blood group antigens (Lewis and ABH antigens) are carbohydrate structures originally identified on RBC by Landsteiner. However, these antigens are widely expressed in many tissues throughout the body, being especially abundant in the epithelial cells of gastric mucosa. The secretor status is defined by the presence of ABH antigens in body fluids and secretions like saliva, gastric juice, and milk.

Lewis (Lewisα, Lewisβ) and ABH antigens are closely interrelated, and in mucosecretory epithelia they are produced from a common precursor (type 1 precursor) by the action of different genes. In the gastric foveolar cells, the expression of Lewis and ABH antigens is fundamentally controlled by the action of the secretor and Lewis genes (Fig. 1). In people who have the secretor and Lewis genes, all of the precursor substance is transformed into H type 1 antigen, and they express Lewisβ and ABH antigens in the foveolar epithelium and in the gastric juice as well. People who do not have the secretor gene cannot produce Lewisα or ABH antigens and, if they have the Lewis gene, all of the precursor is transformed into Lewisα antigen. Finally, people who do not have the Lewis gene do not express Lewisα or Lewisβ in gastric mucosa or gastric juice, and they express ABH antigens only if they have the secretor gene (1–3).

Blood group antigens appear to play an important role in cell recognition, differentiation, and growth regulation and during the process of malignant transformation these antigens undergo important alterations (4).

Lewis system abnormalities have been described in gastric carcinoma and precursor lesions. The anomalous expression of Lewisα antigen in areas of IM of the stomach in Lewis (a−b+) individuals has been considered as a risk marker in the gastric precancerous process.

To explore the role of the alterations in the expression of Lewis antigens in the gastric precancerous process, we have studied histochemical and antigenic anomalies on gastric biopsies from a population from the Andean region in Venezuela with high risk for gastric cancer. We have correlated the Lewis and secretor phenotypes with histological lesions and with Helicobacter pylori status. The expression of anomalous Lewisα antigen in relation to the type of IM was also investigated.

Materials and Methods
Subjects in this study were selected from a randomized double blind, placebo-controlled chemoprevention trial, currently being conducted in Tachira State, Venezuela, the aim of which is to assess the effect of antioxidant vitamins on progression of precancerous lesions of the stomach. The results presented here are a cross-sectional analysis of the subjects who had a histological diagnosis of IM at baseline. Although follow-up data are available, analysis of these data has been deferred until the randomization code is broken and the cohort of subjects receiving placebo can be identified.

The design of the chemoprevention trial has been described in detail elsewhere (5). Briefly, participants in the trial were recruited from the Gastric Cancer Control Program of Tachira State. Eligible subjects were permanent residents of Tachira between 35 and 69 years of age who, after double contrast X-ray, were selected to undergo gastroscopic examination. At entry into the trial, physical examination, blood collection, and gastroscopy were performed. Five biopsies for histological assessment were taken: one from the lesser curvature of the antrum, ~1 cm from the pylorus; one from the greater curvature of the corpus, and one from the body of the stomach.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by Fondo de Investigacion Sanitaria and the Consejeria de Salud del Gobierno Vasco.

2 To whom requests for reprints should be addressed, at IARC, 150 Cours Albert Thomas, F-69372 Lyon, France. Phone: (+33) 04 72 73 84 46; Fax: (+33) 04 72 73 85 75.

Received 11/2/99; revised 3/8/00; accepted 4/13/00.

© 2000 American Association for Cancer Research.
Lewis Antigen Alterations in Stomach Cancer

Biogenex; working dilution, 1:250) and anti-Lewis b (2.25LE, Bio-

genex; working dilution, 1:250) were used to determine the Lewis

tions defined the Lewis (a

100 mM Tris base, 200 mM NaCl, 5 mM MgCl₂, 0.35% HCl, and

0.05% Tween 20, pH 9.0, with naphthol AS-MX phosphatase/Fast

Red TR chromogen (Biomaeda), for 15 min at room temperature.

Sections were faintly counterstained with Lillie’s hematoxylin and

mounted with Crystal-Mount (Biomaeda). Positive and nega-
tive controls were stained with every batch of samples. In the depar-

affinized tissues used, the specificity of primary antibodies is

restricted to the mucin glycoprotein fractions of these antigenic
determinants and was previously determined. Working dilutions

were established by serial titration.

We investigated the aberrant expression of Lewisᵃ antigen in all

Lewis (a⁻−b+) patients. This alteration was categorized in three

patterns (see Ref. (9) for full description and illustrations): pattern

I, anomalous antigen expressed only in some goblet cells;

pattern II, anomalous antigen expressed in goblet cells and

weakly in columnar cells; pattern III, anomalous antigen

strongly positive in both goblet and columnar cells.

For all variables measured at the level of the individual

biopsy, except for H. pylori status, an overall score was calculated

for each subject by taking the most severe of the available biopsy

scores, and this overall score was used in the tabulations and tests.

For H. pylori status, the overall prevalence in all five biopsies was

used for the tabulation, and the difference between secreto-

ners and nonsecretors was tested by Wilcoxon rank sum test, with

the use of the average of the five biopsy scores (rated 1–4 for

negative, difficult to find, easy to find, and abundant, respectively).

Two statistical tests were used to examine the relationships

between cross-tabulated variables. The χ² test was used as a global

test for any relationship, and a trend test (10) was used to look for

a smoothly increasing trend if one of the variables was ordinal.

The data on abnormal Lewisᵃ secretion and histological

diagnosis were examined by applying a log linear Poisson

model to the tabulated data. When controlling for age and other

confounders, a separate multiple logistic regression model was

used for outcomes of IM-II, IM-III, and dysplasia, with IM-I as

a common baseline.

Results

Gastric biopsies taken at baseline were studied from 564 sub-

jects with a global diagnosis of IM or dysplasia. The most

severe lesion among all biopsies was considered as the global

diagnosis. The subjects ranged in age from 34 to 71 (mean, 51),

and 269 were men and 295 women. The secretor status was

unusual in only 552 patients.

The prevalence of the different histological lesions was

58% for type I IM, 12% for type II, 13% for type III IM, and

17% for dysplasia. In dysplastic cases, 81% showed mild, 17%

showed moderate, and 2% showed severe dysplasia.

Table 1 shows the Lewis and secretor phenotype distribution

by sex. There is no significant difference in the distribution of

either phenotype by sex. A high proportion (93%) of Lewis

(a−−b−) phenotype subjects were secretors. The prevalence of

Lewis (a+b−) and nonsecretor individuals was lower than that of

the European population, a fact observed in other Andean popu-

lations (9).

Secretor Status and H. pylori Infection. Table 2 shows the

distribution of histological diagnosis by secretor status. There is

an excess of secretors in the group of subjects with IM-I, but

overall there is no significant difference in the distribution of

the histological diagnoses between secretors and nonsecretors

(P = 0.16; test for trend, P = 0.10).

Table 3 shows the relationship between secretor status and

H. pylori infection, rated on a four point scale (negative, dif-

cult to find, easy to find, abundant); H. pylori infection is very

common in this population: 94% of the participants in the chem-

prevention trial are infected. There is no significant difference

Fig. 1. Effect of Lewis and secretor genes on production of Lewis and ABH

antigens in two foveolar cells.
between secretors and nonsecretors in degree of *H. pylori* infection (*P* = 0.18). Secretor status was also examined in relation to three markers of cellular or mucosal damage, atrophy, regenerative activity, and erosion or ulcer, which were rated on a four point scale for each biopsy (negative, light, moderate, and severe for atrophy and regenerative activity and negative, superficial, mucosal penetration, and submucosal penetration for erosion or ulcer). No relationship was found with any of these markers (tables not shown; *P* = 0.77 for atrophy, *P* = 0.42 for regenerative activity, and *P* = 0.57 for erosion or ulcer. Trend test results, *P* = 0.32, *P* = 0.94, *P* = 1.00, respectively).

In summary, there is weak evidence of a correlation between secretor status and severity of histological diagnosis, but this could not be related to *H. pylori* infection.

Abnormal Expression of Lewis

Expression of Lewis antigens in Lewis (a–b+) Individuals, by Type of IM. Table 4 shows the relationship between abnormal expression of Lewis**a** antigen and histological diagnosis in Lewis (a–b+) individuals. This relationship is shown in Fig. 2. With IM type I as a baseline, there is a clear increasing risk of dysplasia. IM type III, and IM type II with an increasing degree of abnormal expression of Lewis**a**. The trends are all strongly significant (*P* < 0.001 for dysplasia, *P* < 0.001 for IM-III, and *P* = 0.002 for IM-II). The trend for IM-III is stronger than for IM-II (*P* = 0.02), but the trend for dysplasia is weaker than for IM-III.

These results were unchanged after controlling for the confounding effect of age, sex, years of education (as a marker of socioeconomic status), and smoking status, which have been previously identified as risk factors for advanced precancerous lesions in this population.

Discussion

The intestinal or epidemic type of gastric cancer is considered the end result of a multistep process in which multiple factors are involved. *H. pylori* infection, dietary factors, nitroso compounds, oxidative damage, and lack of antioxidant vitamins produce a series of changes in the gastric epithelium which include progressive grades of atrophy, IM, and dysplasia and, finally, a malignant transformation (11). In this dynamic process, progressive alterations in the mucin components and the expression of anomalous antigens may be also observed.

Alterations in the expression of blood group antigens have been extensively described in gastric cancer (12–15). It has been proposed that these anomalies are produced by blockages in the normal synthesis of these antigens, resulting in loss of some of these structures and the appearance of aberrant antigens. The anomalous expression of Lewis**a** antigen in lesions of gastric intestinal IM and dysplasia from Lewis (a–b+) individuals has been previously reported. In our experience, this abnormality has not been observed in the earlier lesions of chronic gastritis and gastric atrophy or in areas of normal gastric mucosa. Previous studies have demonstrated that the simultaneous expression of anomalous Lewis**a** antigen and sulfomucins indicates a greater risk of preneoplastic progression (9, 16).

Our results show an increasing frequency in the prevalence and grade of severity of the anomalous Lewis**a** antigen expression correlated to the severity of the histological changes and to the severity of the histochemical alterations (sialo- and sulfomucin expression). Thus, the most severe pattern of anomalous Lewis**a** antigen expression (pattern III) was more prevalent in dysplastic cases than in type II or type III intestinal metaplasia.

The role of *H. pylori* as the most important etiopathogenic factor in chronic gastritis is well documented. However, its direct involvement in more advanced lesions (gastric atrophy, IM, dysplasia, and cancer) is poorly understood. Recently, the Lewis**a** and H antigens have been described as the receptors responsible for the attachment of *H. pylori* to the gastric mucosa (17). The cytoplasm of the foveolar cells and the gastric mucus are very rich in these antigens, and this fact can explain the especial tropism of this bacterium for the gastric mucosa.

We think that in secretor individuals, the abundant presence of Lewis**a** and H antigens in the gastric mucus acts as a protective mechanism that traps bacteria and prevents their attachment to the gastric epithelium. This protective mechanism has been proposed as an adaptive response to infective microorganisms by Slomiany (18). In the present study, there is no relation-

Table 1 Distribution of Lewis phenotype and secretor status by sex

<table>
<thead>
<tr>
<th>Sex</th>
<th>Lewis phenotype</th>
<th></th>
<th>Secretor status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Le(a+b-)</td>
<td>Le(a−b+)</td>
<td>Le(a−b−)</td>
</tr>
<tr>
<td>Male</td>
<td>31 (12)*</td>
<td>187 (71)</td>
<td>44 (17)</td>
</tr>
<tr>
<td>Female</td>
<td>29 (10)</td>
<td>217 (75)</td>
<td>44 (15)</td>
</tr>
<tr>
<td>Total</td>
<td>60 (11)</td>
<td>404 (73)</td>
<td>88 (16)</td>
</tr>
</tbody>
</table>

*Numbers in parentheses, percentage.

Table 2 Distribution of histological diagnosis by secretor status

<table>
<thead>
<tr>
<th>Secretor status</th>
<th>IM-I</th>
<th>IM-II</th>
<th>IM-III</th>
<th>Dysplasia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secretor</td>
<td>289 (59)*</td>
<td>56 (12)</td>
<td>63 (13)</td>
<td>78 (16)</td>
<td>486</td>
</tr>
<tr>
<td>Nonsecretor</td>
<td>30 (45)</td>
<td>12 (18)</td>
<td>11 (17)</td>
<td>13 (20)</td>
<td>66</td>
</tr>
<tr>
<td>Total</td>
<td>319 (58)</td>
<td>68 (12)</td>
<td>74 (13)</td>
<td>91 (17)</td>
<td>552</td>
</tr>
</tbody>
</table>

*Numbers in parentheses, percentage.

Table 3 Extent of *H. pylori* infection (overall prevalence in subjects with complete biopsy information) by secretor status

<table>
<thead>
<tr>
<th>Secretor status</th>
<th>H. pylori (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Secretor (n = 452)</td>
<td>17</td>
</tr>
<tr>
<td>Nonsecretor (n = 62)</td>
<td>23</td>
</tr>
</tbody>
</table>
Lewis Antigen Alterations in Stomach Cancer

Table 4 Histological diagnosis by degree of abnormal Lewis expression in Lewis (a−b+) subjects

<table>
<thead>
<tr>
<th>Lewis alteration</th>
<th>Histological diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IM-I</td>
</tr>
<tr>
<td>Negative</td>
<td>97 (73)*</td>
</tr>
<tr>
<td>Pattern I</td>
<td>77 (70)</td>
</tr>
<tr>
<td>Pattern II</td>
<td>31 (53)</td>
</tr>
<tr>
<td>Pattern III</td>
<td>32 (33)</td>
</tr>
<tr>
<td>Total</td>
<td>237</td>
</tr>
</tbody>
</table>

*Numbers in parentheses, percentage.

Fig. 2. Odds ratios of IM-II, IM-III, and dysplasia, using IM-I as baseline, by pattern of abnormal Lewis expression in Lewis (a−b+) subjects.

ship between *H. pylori* infection and secretor phenotype. This is not necessarily inconsistent with the theory that *H. pylori* is trapped in the gastric mucosa in secretor individuals. When rating the degree of *H. pylori* infection, it was not possible to distinguish between bacteria attached to cells and bacteria in mucus.

Previously, we have observed a lower epithelial damage, grade of atrophy, and a lower prevalence of sulfomucin expression in secretor individuals than in nonsecretors. In this study, there was no relationship between secretor status and atrophy, regenerative activity or erosion or ulcer.

A strong relationship between the expression of sulfomucins and nonsecretor status has been described in precursor lesions of gastric cancer (19) and also in Barrett’s esophagus and Barrett’s adenocarcinoma (20). In the present study, there is a tendency for nonsecretors to have more type III IM and dysplasia than secretors but, possibly due to the small number of nonsecretor individuals, the difference was not significant.

In summary, our results indicate that at the same time as the morphological changes that occur during the process of gastric carcinogenesis, another series of events occurs. Thus, the anomalous appearance of Lewis and sulfomucins in areas of intestinal metaplasia appear to behave as immunohistological indicators of a greater severity of morphological lesions. Further follow-up studies are required to clarify the role of predictive markers of risk in precursor lesions of gastric cancer.

Acknowledgments

We thank Olga Andrade, Denis Castro, Victor Sanchez, and Elsa Cano for their work as histotechnicians; and Gloria Moreno, Angel Chacon, and Jasmin Rangel for their work as endoscopists on this study.

References

Lewis Antigen Alterations in a Population at High Risk of Stomach Cancer

Julio Torrado, Martyn Plummer, Jorge Vivas, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/9/7/671

Cited articles
This article cites 15 articles, 5 of which you can access for free at:
http://cebp.aacrjournals.org/content/9/7/671.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/9/7/671.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.