Rectal Mucosal Proliferation and Risk of Colorectal Adenomas:
Results from a Randomized Controlled Trial

Robert S. Sandler,^2^ John A. Baron, Tor D. Tosteson, Jack S. Mandel, and Robert W. Haile

Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7080 [R. S. S.]; Department of Community and Family Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03756 [J. A. B., T. D. T.]; Exponent, Menlo Park, California 94025 [J. S. M.]; and Department of Preventive Medicine, University of Southern California School of Medicine, Los Angeles, California 90033 [R. W. H.]

Abstract

Although rectal mucosal labeling index is thought to be a useful surrogate biomarker for colorectal cancer, the ability of the index to predict future neoplasia is unclear. We obtained rectal mucosal biopsies from 333 participants of a randomized controlled chemoprevention trial of calcium supplementation to determine whether labeling index was correlated with concurrent or future colorectal neoplasms. Labeling index was measured using proliferating cell nuclear antigen immunohistochemistry. Adenomas were enumerated at the time of the biopsies (cross-sectional) and 3 years later (prospective). We used logistic regression to test for an association of adenoma occurrence with overall labeling index, the mean proliferative height, and labeling index in the upper 40% of colon crypts. In the cross-sectional analysis, we found indications that higher proliferation was associated with an increase in the prevalence of adenomas. The overall adjusted odds ratios (OR) (95% confidence interval) were 1.14 (0.90–1.45) per % crypt labeling index, OR 1.08 (0.99–1.19) for upper crypt proliferation, and OR 1.07 (1.03–1.12) for proliferative height. In contrast, individuals with higher labeling index at baseline were actually less likely to have adenomas in the prospective analyses: OR 0.80 (0.62–1.02) per % crypt labeling index, OR 0.86 (0.73–1.00) for upper crypt index, and OR 0.97 (0.93–1.01) for proliferative height. Proliferative index does not predict future colorectal neoplasia, although it may be weakly associated with the presence of current adenomas. These results have important implications for the design of future intervention studies. Although it may be attractive to include the measurement of intermediate markers in large controlled trials, until we have more confidence in their performance, we should rely on better proven and more reliable intermediates, such as adenomas.

Introduction

Colorectal cancer is thought to arise through a series of putative intermediate stages that can serve as surrogate biological markers for colorectal cancer risk. Because it may be possible to rapidly modify these intermediates, they are attractive for use as end points in colorectal cancer prevention studies.

Rectal mucosal proliferation has been extensively studied as a colorectal cancer risk biomarker both in laboratory animals and in humans. Numerous studies have demonstrated elevated proliferation in the normal-appearing mucosa of high-risk individuals, such as those with ulcerative colitis, family history of colorectal cancer, polyposis, sporadic adenomas, and large bowel cancer (1). Almost all of these studies have had a cross-sectional design, however, and the ability of these proliferation measures to predict future adenomas is not clear. Chemoprevention studies of calcium using proliferation markers have reached equivocal results (2). The discrepant results from these trials may have resulted, in part, from methodological differences in study design and execution. Moreover, measurement of proliferation is technically demanding. There are many sources of variation (within and between individuals) (3, 4). The size of the within-person variation may be nearly as large as between-person variation, making it difficult to separate signal from noise (5).

As part of a large, randomized, placebo-controlled study of calcium in the prevention of neoplastic polyps of the large bowel, we obtained rectal mucosal biopsies and calculated rectal mucosal proliferation index in 330 patients. Each of the study subjects underwent a careful colonoscopic examination at the conclusion of the study, 3 years after the rectal biopsies. We hypothesized that if individuals with higher proliferation indices were at increased risk for colorectal cancer and its precursors, we would find a direct association between proliferation index and adenoma risk. The purpose of this study was to test this hypothesis by examining the association between proliferation and adenomas at two time points, adenomas at the same time as the biopsies and adenomas in the 3 years after the proliferation measurement.

Materials and Methods

The methods have been described in detail elsewhere (6). The biopsy specimens for rectal mucosal proliferation in this study were obtained during a randomized, controlled, double-blind, placebo-controlled trial of calcium carbonate to prevent recurrent colorectal adenomas (7). The study was conducted in six medical centers and associated gastroenterology practices: the Cleveland Clinic; Dartmouth Hitchcock Medical Center; the University of California Los Angeles/Kaiser Hospital; the University of Iowa; the University of Minnesota; and the University of Southern California School of Medicine, Los Angeles, California 90033 (J. S. M.).

^2^To whom requests for reprints should be addressed, at Division of Digestive Diseases and Nutrition, CB 7080, 719 Burnett-Womack Building, University of North Carolina, Chapel Hill, NC 27599-7080. Phone: (919) 966-0090; Fax: (919) 966-2478; E-mail: rsandler@med.unc.edu.

Received 11/2/99; revised 3/29/00; accepted 4/29/00.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore hereby be marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This work was supported in part by Grants P30 DK34987, R01 CA44684, and U01 CA46927 from the NIH.
Proliferation and Colorectal Adenomas

Table 1 Characteristics of study subjects

<table>
<thead>
<tr>
<th>No. of patients</th>
<th>333</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age at randomization (± SD)</td>
<td>60.8 ± 9.4</td>
</tr>
<tr>
<td>% male</td>
<td>72.7</td>
</tr>
<tr>
<td>Mean no. of prior adenomas</td>
<td>2.18 ± 1.90</td>
</tr>
<tr>
<td>Mean no. of adenomas at year 1 exam (± SD)</td>
<td>0.42 ± 1.02</td>
</tr>
<tr>
<td>Mean no. of adenomas between year 1 and year 4 exams (± SD)</td>
<td>0.56 ± 1.12</td>
</tr>
</tbody>
</table>

*After year 1 exam up to and including the year 4 exam.

No specimen was cut into 4-mm sections. To maximize antigenicity, the sections were prepared at 50–54°C, and serial sections were fixed to poly-L-lysine-coated slides prior to immunohistochemistry. Anti-PCNA (PC-10 clone; Signet Laboratories, Inc., Dedham, MA) monoclonal antibodies were used to detect proliferating cells. The Vectastain ABC kit (Vector Laboratories, Inc., Burlingame, CA) was used for staining, and diluted hematoxylin (Fisher Scientific Co., Pittsburgh, PA) was used as a counterstain.

Strict rules were used to score the specimens. One technician, blind to treatment status, scored all of the specimens. The technician counted all well-oriented, U-shaped crypts that were open from the apical lumen to the base. A well-shaped crypt that did not contact the muscularis mucosa was acceptable if its height was similar to neighboring crypts; otherwise, we required that the crypt base contact the muscularis mucosa. Only the deepest staining or the next lighter shade of staining if its height was similar to neighboring crypts; otherwise, we required that the crypt base contact the muscularis mucosa. The technician counted the number of cells in each half of the U-shaped crypt and recorded the number and position of each labeled cell. In a validation study, repeated PCNA scoring was performed on 20 patients by the study technician; the intraclass correlation was 0.40 for the overall labeling index (8).

The LI was calculated by dividing the number of labeled cells by the total number of crypt cells in scorable crypts that had at least one labeled cell or a crypt that was surrounded by crypts with at least one labeled cell. The crypt LIs were averaged to produce a patient average LI. In addition, we determined the proportion of labeled cells in the upper (luminal) 40% of the crypt (φ_{40}) and the PH, which is the mean position (in %) of labeled cells in the crypt, ordered from base to lumen.

All scorable crypts were included in the analysis. ORs for adenoma recurrence (and 95% CIs) were calculated using logistic regression modeling in SAS (SAS Institute, Cary, NC). Age, race, sex, institution, and treatment group were included as covariates in these models. We examined trends by computing ORs per unit index. Because all subjects received polyethylene glycol preparation and because the preparation method did not have a significant impact on proliferation measures, we did not include type of bowel prep in the model. Analyses focused on two sets of relationships. In common with most prior studies, we investigated the relationship between the presence/absence of adenomas at the year 1 endoscopy and the proliferation measures from biopsies taken at that exam. We refer to these as cross-sectional analyses. We also conducted a prospective analysis investigating whether the proliferative measures at the year 1 exam predicted the occurrence of adenomas during the subsequent 3 years (i.e., up to and including the year 4 exam).

To formally compare the adjusted relative risk coefficients for the baseline LIs as predictors of adenoma occurrence at years 1 and 4, longitudinal regression models (generalized estimating equations) were fit simultaneously, estimating the two coefficients. The coefficients were then compared with appropriate adjustment for the fact that they were fit using repeated observations on the same individuals.

Results

The characteristics of participants are shown in Table 1. There were 173 subjects who were randomized to calcium and 160 to placebo. Seventy % of the subjects were men, and the mean age of subjects was 60.8 years. There were fewer adenomas in the calcium group both at the first (year 1) colonoscopy and subsequently (up to and including the year 4 exam).

The mean LI for the 333 subjects was 3.88 (1.08 SD). Table 2 presents the adjusted ORs for adenoma development at years 1 and 4, longitudinal regression models (generalized estimating equations) were fit simultaneously, estimating the two coefficients. The coefficients were then compared with appropriate adjustment for the fact that they were fit using repeated observations on the same individuals.

4 The abbreviations used are: PCNA, proliferating cell nuclear antigen; CI, confidence interval; OR, odds ratio; LI, labeling index; PH, proliferative height.

8 The correlation was 0.40 for the overall labeling index (8).
If proliferation index were predictive of adenoma risk, one might further hypothesize that a higher index at the first follow-up exam would be associated with the development of adenomas in the subsequent 3 years. However, as shown in Table 2, there was an inverse association of proliferation with subsequent adenoma risk. LIs in the second through fourth quartile were associated with a lower risk of adenoma recurrence; the higher the LI, the lower the risk of subsequent adenomas (adjusted OR per % LI, 0.80; 95% CI, 0.62–1.02). For proliferation in the upper crypt, individuals with a \(\phi_{ad} > 0 \) had a decreased risk of adenoma on follow-up (adjusted OR, 0.53; 95% CI, 0.28–1.00). The OR per % crypt height was 0.86 (95% CI, 0.73–1.00). PH showed similar findings with a borderline significant decreased risk of adenoma recurrence. Bostick et al. (25) reported an association between calcium supplementation and adenoma formation. However, our study was restricted to individuals with previous adenomas. Several studies have shown that individuals with adenomas have a higher proliferation index (25). If the index were uniformly high in our subjects, we might not be able to discriminate those destined to develop adenomas. Although it is problematic to make comparisons of LI data between labs because of differences in techniques and scoring, it is relevant to note that the overall LI in our subjects was similar to that reported by McShane et al. (5). Bostick et al. (25) studied a similar population of patients with previous adenomas and found an association between calcium supplementation and proliferation index.

Table 2

<table>
<thead>
<tr>
<th>LI</th>
<th>Cross-sectional adjusted OR ((95% \text{ CI}))</th>
<th>Prospective adjusted OR ((95% \text{ CI}))</th>
<th>(\phi_{ad})</th>
<th>(\phi_{ad})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole-crypt LI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartile 1</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Quartile 2</td>
<td>1.39 (0.66–2.90)</td>
<td>0.56 (0.28–1.13)</td>
<td>0.80 (0.36–1.82)</td>
<td>0.40 (0.19–0.84)</td>
</tr>
<tr>
<td>Quartile 3</td>
<td>0.80 (0.36–1.82)</td>
<td>0.40 (0.19–0.84)</td>
<td>0.40 (0.19–0.84)</td>
<td>0.40 (0.19–0.84)</td>
</tr>
<tr>
<td>Quartile 4</td>
<td>1.29 (0.61–2.71)</td>
<td>0.60 (0.30–1.20)</td>
<td>0.60 (0.30–1.20)</td>
<td>0.60 (0.30–1.20)</td>
</tr>
<tr>
<td>Overall OR % LI</td>
<td>1.14 (0.90–1.45)</td>
<td>0.80 (0.62–1.02)</td>
<td>0.80 (0.62–1.02)</td>
<td>0.80 (0.62–1.02)</td>
</tr>
<tr>
<td>Upper crypt proliferation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi_{ad} > 0)</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(\phi_{ad} > 0)</td>
<td>1.52 (0.84–2.74)</td>
<td>0.53 (0.28–1.00)</td>
<td>0.53 (0.28–1.00)</td>
<td>0.53 (0.28–1.00)</td>
</tr>
<tr>
<td>Overall OR % (\phi_{ad})</td>
<td>1.08 (0.99–1.19)</td>
<td>0.86 (0.73–1.00)</td>
<td>0.86 (0.73–1.00)</td>
<td>0.86 (0.73–1.00)</td>
</tr>
<tr>
<td>PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartile 1</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Quartile 2</td>
<td>1.95 (0.85–4.47)</td>
<td>0.97 (0.48–1.95)</td>
<td>0.97 (0.48–1.95)</td>
<td>0.97 (0.48–1.95)</td>
</tr>
<tr>
<td>Quartile 3</td>
<td>1.42 (0.61–3.23)</td>
<td>0.43 (0.20–0.89)</td>
<td>0.43 (0.20–0.89)</td>
<td>0.43 (0.20–0.89)</td>
</tr>
<tr>
<td>Quartile 4</td>
<td>3.03 (1.38–6.64)</td>
<td>0.61 (0.29–1.26)</td>
<td>0.61 (0.29–1.26)</td>
<td>0.61 (0.29–1.26)</td>
</tr>
<tr>
<td>OR per % crypt height</td>
<td>1.07 (1.03–1.12)</td>
<td>0.97 (0.93–1.01)</td>
<td>0.97 (0.93–1.01)</td>
<td>0.97 (0.93–1.01)</td>
</tr>
</tbody>
</table>

\(a \) Biopsies and adenomas evaluated at the time of the year 1 colonoscopy.

\(b \) OR (95% CI) adjusted for treatment group, age, sex, institution, and time between exams.

\(c \) Proliferation measured at year 1 and adenomas evaluated 3 years later (year 4).

\(d \) General estimating equation-derived \(\phi \) for difference between cross-sectional and prospective ORs (see text for details).

\(e \) Compared to \(\phi_{ad} = 0 \).

Discussion

In this randomized controlled clinical trial, there were suggestions that increasing proliferation was associated with an increased prevalence of adenomas in the bowel at the time the biopsies were taken. Contrary to expectation, however, higher proliferation was associated with a decreased risk of adenomas in the subsequent 3 years. The results were unchanged when we controlled for treatment group and other potentially confounding factors.

Rectal mucosal proliferation indices have attractive features for intervention studies. The LI has been shown to be increased in individuals who have a higher risk for cancer. For example, the labeling index has been found to increase with age (10–12) and to be higher in individuals with a family history of cancer (13, 14) and previous adenomas and cancer (15–17). The index seems to be lower in vegetarians, a group at lower risk of colorectal cancer (18). Medical conditions that are known to confer higher risk of cancer, such as familial polyposis (19) and ulcerative colitis (20), have been associated with higher LI.

Intervention studies to prevent colorectal cancer are complicated by the fact that it may take decades for colorectal cancer to develop. Using an intermediate biomarker, such as rectal mucosal proliferation, as an end point could substantially shorten an intervention trial. Previous studies have shown changes in LI within 1 month of an intervention (21), although small studies showed no effects after 5 days (22) and 2 weeks (23).

In a prospective study, Anti et al. (24) found that the baseline mean labeling index in upper crypt compartments was higher in 22 patients who developed recurrent adenomas after 24 months compared with 33 patients without recurrence. They concluded that an upward shift of the replicative compartment was associated with polyp recurrence. Bostick et al. (25) performed a cross-sectional analysis using baseline rectal mucosal biopsies in individuals participating in a cancer chemoprevention study similar to ours. They found lower proliferation index for individuals with high vegetable and fruit consumption and vitamin consumption.

How can we explain the lack of association between proliferation index and adenomas both cross-sectionally and after 3 years? Our study was restricted to individuals with previous adenomas. Several studies have shown that individuals with adenomas have a higher proliferation index (25). If the index were uniformly high in our subjects, we might not be able to discriminate those destined to develop adenomas. Although it is problematic to make comparisons of LI data between labs because of differences in techniques and scoring, it is relevant to note that the overall LI in our subjects was similar to that reported by McShane et al. (5). Bostick et al. (25) studied a similar population of patients with previous adenomas and found an association between calcium supplementation and proliferation index. Moreover, we found a difference in adenoma development between the calcium and placebo group, suggesting that there was sufficient diversity in the study population to detect a difference using another biomarker (adenomas). Another potential problem is that the intraclass correlation coefficient in our study (0.4) was lower than in some other reported studies (4). However, the lack of precision in our measurements could not possibly explain an inverse association between proliferation and adenomas in the prospective analysis, a direct association in the cross-sectional analysis, and a statistically significant difference between the two.

Our study was a multicenter study, and conducting the study in several locations could potentially have introduced variation. However, study site was not a significant predictor of proliferation.
indices, and the proliferation measures were performed in a single laboratory with experienced personnel. Not all subjects had the same bowel preparation for their colonoscopy, although the majority used a balanced electrolyte lavage. Fireman et al. (26) found no difference in proliferative measures in patients prepared with a polyethylene glycol-electrolyte solution or extract of senna purgative. Although all of our biopsies were taken from the rectum, others have shown that the LI in the rectum is similar to that in the remainder of the large bowel (9, 27). Biopsies were taken at different times of day. In a large study by McShane et al. (5), the hour of biopsy did not influence the mucosal proliferation index. We used PCNA immunohistochemistry as our proliferation measure. Some authors have suggested that PCNA expression is not a sensitive marker of neoplasia risk in intestinal mucosa (28). Finally, despite various limitations, our study found an increased proliferation index among adenoma patients at the year 1 colonoscopy, as predicted. The fact that we found a direct association between proliferation index and adenomas in the cross-sectional analysis but an inverse association at follow-up cannot be attributed to systematic bias or lack of precision of the measurements.

There are several notable strengths of our study. Our study was very large. We measured proliferation in over 300 study subjects and carefully followed them for 3 years after their biopsies. The large size of the study increased our ability to detect small differences. The fact that we found no differences makes it unlikely that there is a strong association between proliferation index in rectal biopsies measured by PCNA immunohistochemistry in adenoma patients and the subsequent development of adenomas. The proliferation measurements were conducted in a laboratory with personnel of considerable experience, and we used a detailed protocol for processing specimens and counting labeled cells. The statistical analysis controlled for potentially confounding factors.

In conclusion, although on cross-sectional analysis we found indications of the expected association between proliferation and adenoma risk, on prospective analyses an inverse association emerged. These results have important implications for the design of future intervention studies. Measurement of rectal mucosal proliferation is tedious, expensive, and unreliable. Although it may be attractive to include the measurement of intermediate markers in large controlled trials, until we have more confidence in their performance, we should rely on better proven and more reliable intermediates, such as adenomas.

References

Downloaded from cebp.aacrjournals.org on April 20, 2017. © 2000 American Association for Cancer Research.
Rectal Mucosal Proliferation and Risk of Colorectal Adenomas: Results from a Randomized Controlled Trial

Robert S. Sandler, John A. Baron, Tor D. Tosteson, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/9/7/653

Cited articles
This article cites 28 articles, 14 of which you can access for free at:
http://cebp.aacrjournals.org/content/9/7/653.full.html#ref-list-1

Citing articles
This article has been cited by 7 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/9/7/653.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.