Stage-dependent Evaluation of Microsatellite Instability in Gastric Carcinoma with Familial Clustering


Abstract

Familial clustering of gastric cancer is probably caused by multifactorial processes, both environmental and genetic. In this report, the incidence of microsatellite instability (MSI) in 31 cases of gastric cancer in Japanese (33 lesions) with familial clustering (two or more gastric cancers within second-degree relatives) was compared to MSI in Japanese cases without a family history of any cancer in an age (±10 years)-, stage-, and histological subtype-matched case-control study. Although the difference noted was not significant, we noted a strong trend for MSI at any of up to seven loci of CA repeats to occur more frequently in the patients with a family history of gastric cancer than in the control patients in early cancer (intramucosal and submucosal), whereas the prevalence of MSI was similar in both groups in more advanced cases, in which the tumor invaded beyond the proper muscle layer of the gastric wall. Because the contribution of a family history of gastric cancer to MSI apparently differs in early and advanced gastric cancer, interpretation of MSI in familial gastric cancer cases published previously requires reevaluation in terms of stage and proper controls. An acquisition of CA repeat alterations in the early stage rather than in the late stage of gastric carcinogenesis may have in common etiological factors, at least in some cases, with the familial clustering of gastric cancer.

Introduction

Familial clustering of gastric cancer has been well documented (1), and various reasons, including shared environmental carcinogens such as Helicobacter pylori and food mutagens, have been proposed, as well as genetic factors such as blood type and cancer family syndrome, but analysis of such cases has been limited to date. In contrast, studies of familial colorectal cancer have revealed many markers that provide evidence of a genetic predisposition. MSI detected by PCR spanning CA repeats was identified originally in tumors of HNPCC, which is associated with defects in mismatch repair genes (2–4). MSI has been found in many human cancers, including gastric cancer, without regard to familial clustering. Although MSI in gastric cancers with familial clustering suggests a “familial” gastric cancer situation analogous to that of HNPCC (5–7), it is difficult to interpret this as evidence for genetic predisposition, because of the frequent occurrence of MSI in gastric cancers without any evidence of family history (8–11). Clustering of gastric cancer has been observed in familial cancers such as Li-Fraumeni syndrome caused by germ-line p53 mutations (12), and defects other than mismatch repair gene defects may be the cause of familial clustering of gastric cancer. Therefore, the significance of MSI in gastric cancer in terms of its association with familial history requires further evaluation.

Because previous reports indicate that histopathological categories and stages may influence the detectability of MSI in gastric tumors (11, 13, 14), we evaluated the contribution of family history to detectability of MSI in gastric cancer by matching histopathological subtypes and stages of gastric cancer invasion in the stomach wall.

Subjects and Methods

Pathological Examination. Resected stomachs were examined independently by two or more pathologists, and the findings were reported in standardized form by one of the authors (I. K.). The subject of pathological examination included the entire area covered by the cancer, the deepest layer of the gastric wall into which the tumor had invaded, and all regional lymph nodes.

All lesions were resected stomach cancers in which the deepest layer of the gastric wall involved was identified by studying multiple sections covering the entire mucosal tumor area.

All sections were classified according to the General Rules of the Japanese Research Society for Gastric Cancer (15). This classification system was converted to the Lauren classification system (16), in which each category, diffuse or intestinal, corresponded to one or more categories in the Japanese classification system. The papillary structure of gastric cancer was used to determine the category "papillary carcinoma of the stomach" (pap), and well and moderately differentiated adenocarcinomas were subtyped “tub1” and “tub2” based on the

Received 12/2/96; revised 4/3/97; accepted 4/9/97.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

2 To whom requests for reprints should be addressed. At First Department of Pathology, Hamamatsu University School of Medicine. 3600 Handa-cho, Hamamatsu 431-31 Japan. Phone: 81-53-435-2218; Fax: 81-53-435-2225; E-mail: hsugimur@hama-med.ac.jp.

1 The abbreviations used are: MSI, microsatellite instability; HNPCC, hereditary nonpolyposis colorectal cancer.
formation of well differentiated and moderately differentiated glands. Poorly differentiated carcinoma and signet ring cell carcinoma are categorized separately in the Japanese classification system. In this report, we did not separately classify "por1" and "por2," i.e., solid and scirrhous subtype of poorly differentiated adenocarcinoma, respectively. The first three categories by the Japanese classification system (pap, tub1, and tub2) correspond to the intestinal subtype in the Lauren classification system, and the Japanese categories "por" and "sig" correspond to Lauren's "diffuse" subtype.

The depth of tumors was recorded according to the rules in the Japanese classification system, which state that "depth" should be the deepest layer of gastric wall involved by the tumor. Identification of the deepest layer affected was achieved by examining multiple sections of the whole tumor and recorded as invasion to the lamina muscularis mucosae (m), submucosal layer (mp), subserosa (ss), invasion through the serosa with the tumor exposed to the abdominal coelum (se), or direct infiltration to adjacent organs through adherent serosa (si).

The "t" parameters of the staging of gastric cancer were also classified based on the Japanese system.

### Gastric Cancer with Familial Clustering

Thirty-one cases of gastric cancer with familial clustering were retrieved from the pathological and clinical records of Hamamatsu University School of Medicine and Fujieda Municipal Hospital (1985–1995). The areas from which the cases and controls were collected were within 200 km of Tokyo. No endemic gastric cancer is known in any of the areas from which the cases and controls were collected. All of the subjects were Japanese and neither consanguinity nor particular exposure to chemical carcinogens was recorded in any of the cases or the controls. No record of occupational history of the subjects of this study. We matched age (±10 years old), depth (early versus advanced: m, sm, mp, ss, se, and si), and histopathological subtypes (pap, tub1, tub2, por, and sig) in the control group, as explained above. When matching histological subtypes, we first collected cases so that the histological subtypes according to the Japanese classification system matched, and then we included cases that belonged to the same type according to the Lauren classification system, whenever a strict match based on the Japanese classification system was impossible. In collecting depth-matched controls, the deepest layers involved were matched with equivalent layers of involvement, or, where this was not possible, with the closest more advanced case. The family records of the controls as well as the patients

### Table 1: MSI of gastric cancer with and without family history: early gastric cancer

<table>
<thead>
<tr>
<th>No. of pairs</th>
<th>With family history of gastric cancer</th>
<th>Matched parameters</th>
<th>Age and sex</th>
<th>Without family history of any cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSI* LOH*</td>
<td>Subtype*</td>
<td>Subtype*</td>
<td>Depth*</td>
</tr>
<tr>
<td>1</td>
<td>0/5</td>
<td>-</td>
<td>Intestinal</td>
<td>pap</td>
</tr>
<tr>
<td>2</td>
<td>1/7</td>
<td>-</td>
<td>Intestinal</td>
<td>pap</td>
</tr>
<tr>
<td>3</td>
<td>4/7</td>
<td>+</td>
<td>Intestinal</td>
<td>pap</td>
</tr>
<tr>
<td>4</td>
<td>0/3</td>
<td>-</td>
<td>Intestinal</td>
<td>pap</td>
</tr>
<tr>
<td>5</td>
<td>0/3</td>
<td>-</td>
<td>Intestinal</td>
<td>pap</td>
</tr>
<tr>
<td>6</td>
<td>0/3</td>
<td>-</td>
<td>Intestinal</td>
<td>tub1</td>
</tr>
<tr>
<td>7</td>
<td>2/6</td>
<td>-</td>
<td>Intestinal</td>
<td>tub1</td>
</tr>
<tr>
<td>8</td>
<td>0/3</td>
<td>+</td>
<td>Intestinal</td>
<td>tub1</td>
</tr>
<tr>
<td>9</td>
<td>2/6</td>
<td>-</td>
<td>Intestinal</td>
<td>tub1</td>
</tr>
<tr>
<td>10</td>
<td>2/6</td>
<td>-</td>
<td>Intestinal</td>
<td>tub1</td>
</tr>
<tr>
<td>11</td>
<td>0/6</td>
<td>-</td>
<td>Intestinal</td>
<td>tub2</td>
</tr>
<tr>
<td>12</td>
<td>0/7</td>
<td>-</td>
<td>Diffuse</td>
<td>sig</td>
</tr>
<tr>
<td>13</td>
<td>0/7</td>
<td>-</td>
<td>Diffuse</td>
<td>sig</td>
</tr>
<tr>
<td>14</td>
<td>0/5</td>
<td>-</td>
<td>Diffuse</td>
<td>por</td>
</tr>
<tr>
<td>15</td>
<td>1/5</td>
<td>-</td>
<td>Diffuse</td>
<td>por</td>
</tr>
<tr>
<td>16</td>
<td>0/6</td>
<td>-</td>
<td>Diffuse</td>
<td>por</td>
</tr>
<tr>
<td>17</td>
<td>0/7</td>
<td>-</td>
<td>Diffuse</td>
<td>por</td>
</tr>
<tr>
<td>18</td>
<td>2/7</td>
<td>-</td>
<td>Diffuse</td>
<td>sig</td>
</tr>
</tbody>
</table>

* Number of loci showing MSI/number of loci for which data were available.
* Presence (+) or absence (−) of the loss of heterozygosity at any locus studied.
* Subtypes according to the Lauren classification.
* Subtypes according to the Japanese classification; see "Subjects and Methods;".
* The deepest layer of gastric wall involved by tumor, according to the Japanese classification; see "Subjects and Methods;".
* The tnf classification (pathologically verified TNM) according to the Japanese system.
were written by nurses and doctors. All of the information from clinical, pathological, and family history records for both patients and controls was reviewed and standardized.

**MSI and Germ-Line p53 Mutations.** DNA was extracted from a tumorous portion dissected from paraffin-embedded tissue, as reported previously (9). Primer sets covered loci D1S116, D2S136, D3S1067, D6S87, D10S197, D17S261, and TP53 (17, 18). 32P-labeled ATP was used for end labeling of primers with a Megalabel kit (Takara, Kyoto, Japan), PCR products were electrophoresed on a 6% polyacrylamide gel, and Kodak XAR film was then exposed to the gel. Identification of compressed and expanded bands was performed blindly by two independent investigators. Because this assay could produce artifactual bands when we used DNA from paraffin-embedded tissues, we repeated the experiments more than twice under several different conditions, including magnesium chloride concentrations in the PCR buffer and annealing temperatures. Ambiguous results were excluded from the comparative analysis.

The procedures for detection of germ-line p53 mutations have been reported elsewhere (12, 19). Briefly, PCR-single-strand conformational polymorphism was performed to detect p53 mutations covering exons 5–9 in DNA from normal portions of the tissue blocks in each case.

**Statistical Analysis.** The prevalence of MSI at one or more loci was compared in the cases and controls, and prevalence in each case-control subgroup, such as depth of cancer invasion and histopathological subcategory, was also compared. χ² analysis and Fisher’s exact test were performed, and the two groups were compared with 1 degree of freedom.

**Results**

The clinical and pathological profiles of all of the cases and the controls are listed in Tables 1 and 2. Changes in microsatellite markers (instability and loss of heterozygosity) in the cases and controls are also summarized in Tables 1 and 2. Examples of MSI at four loci are shown in Fig. 1. The numbers of available data were approximately the same in both groups. The difference in prevalence of MSI at one or more loci in the cases and controls was not statistically significant (14 of 33 versus 12 of 33; P = 0.45); however, separation into early stage (depth of m or sm, corresponding to t1) and advanced stage (t2, t3, or t4) revealed a trend for the prevalence of MSI in familial gastric cancer to be greater than in gastric cancer without a family history of any cancer (7 of 18 versus 2 of 18; P = 0.054; Table 3). This trend increased when we compared microsatellite alterations, including replication errors and loss of heterozygosity (9 of 18 versus 2 of 18; P < 0.05), and it was still present when cases in which two or more loci exhibiting microsatellite markers, i.e., the cases of more likely mutant phenotype were...
Number of loci with MSI.

Frequency of MSI at one or more loci between intestinal and diffuse type is not statistically different (\( P = 0.46 \)). Furthermore, when divided according to histological subtype, no differences between the two groups in prevalence of MSI were seen (Table 4). In addition, overall prevalence of MSI did not differ in the intestinal and diffuse histological subtypes (17 of 38 versus 2 of 18). In contrast, prevalence was greater when Fisher’s exact test is applied.

Table 4  Prevalence of MSI in case and control according to histological subtype

<table>
<thead>
<tr>
<th>Group</th>
<th>MSI*</th>
<th>With family history of gastric cancer</th>
<th>( P )</th>
<th>Without family history of any cancer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal</td>
<td>–</td>
<td>10 of 19</td>
<td>0.74*</td>
<td>11 of 19</td>
<td>21 of 38</td>
</tr>
<tr>
<td></td>
<td>( \geq 1 )</td>
<td>9 of 19</td>
<td>0.74*</td>
<td>8 of 19</td>
<td>17 of 38</td>
</tr>
<tr>
<td></td>
<td>( \geq 2 )</td>
<td>6 of 19</td>
<td>0.72*</td>
<td>5 of 19</td>
<td>11 of 38</td>
</tr>
<tr>
<td>Diffuse</td>
<td>–</td>
<td>8 of 14</td>
<td>0.90*</td>
<td>4 of 14</td>
<td>10 of 28</td>
</tr>
<tr>
<td></td>
<td>( \geq 1 )</td>
<td>6 of 14</td>
<td>0.25*</td>
<td>4 of 14</td>
<td>10 of 28</td>
</tr>
<tr>
<td></td>
<td>( \geq 2 )</td>
<td>3 of 14</td>
<td>1.00*</td>
<td>2 of 14</td>
<td>5 of 28</td>
</tr>
</tbody>
</table>

* Number of loci with MSI. –, no MSI at any loci.

\( * \) Uses \( \chi^2 \) analysis (without Yates’s correction). The values become greater when Fisher’s exact test is applied.

\( * \) Frequency of MSI at one or more loci between intestinal and diffuse type is not statistically different (\( P = 0.46 \)).

**Discussion**

Because MSI in colorectal tumors in HNPCC patients reflects mismatch repair gene defects in the germ line of these patients, genomic instability detected as MSI in tumors is believed to be associated with individual genetic predisposition to cancer (4, 21). However, not all MSI found in tumors represents germ-line mismatch repair gene defects, and somatic mutations of those genes have also been reported. Gastric cancer exhibits a variety of histological findings and is one of the common epithelial tumors in which MSI is observed frequently. MSI in gastric tumors has frequently been correlated with stage, location, prognosis, and erbB-2 expression (4, 10, 13, 14, 22–25). It is also associated with multiple tumors and familial history (8, 9, 26). Recently, Akiyama et al. (5) reported MSI in the gastric cancer tissue of six patients with a family history of gastric cancer, two of which were early-stage cancers. On the basis of their own data on the four families and data on three probands reported by others (27), they speculated that MSI is more frequent in gastric cancer with familial clustering and that the frequent MSI in the tumor may mean that its pathogenesis might be similar to that of HNPCC. However, none of these previous reports have examined MSI in sporadic gastric cancers, and little is known about the association of MSI in gastric tumors and a family history of gastric cancer (22). Our report is the largest study of MSI in gastric cancer with a family history and addresses the importance of stage-dependent comparison for the first time. We adopted a histological subclassification system that included more specific morphologic characteristics than a simple dichotomy such as “diffuse” and “intestinal” in selecting controls. Furthermore, taking advantage of information on tumor depth, which is standardized by the Japanese classification system, we matched each case to the control on the basis of depth of invasion. We believe that this strictly matched evaluation is necessary to assess the association between familial clustering and the presence of MSI in gastric cancer. Actually, a trend for increased prevalence of MSI in familial cases had only been noted in early cancer, whereas our data clearly showed that the prevalence of MSI was similar in advanced gastric cancer, with or without familial clustering of gastric cancer. This MSI, more frequently found in advanced cancer, appears to be acquired during the progression of gastric cancer. It is more probable that the MSI in early-stage cancer is associated with familial clustering, but the numbers of cases and controls were small, and these results should be
interpreted with caution. In particular, cases exhibiting MSI at more than two loci, potentially mutator phenotype tumors, which are too small in number to allow a statistically significant conclusion in this data set, are the most important candidates for further investigation for genetic predisposition to gastric cancer. Possible targets such as the transforming growth factor β receptor type II gene (TGFBR2) or the MSH3 gene must also be examined to confirm that the MSI in these familial gastric cancers represents the mutator phenotype of the tumor. Naturally, the germ-line alterations of mismatch repair genes in our cases are of interest, but because most of the patients in this study were older than 50 years old, the situation differs from that of HNPCCs, which have germ-line mutations of mismatch repair genes. Akiyama et al. (5) found a somatic hMSH2 mutation in tumor DNA but not in the germ-line DNA of the family members, suggesting a contribution of somatic changes to MSI in gastric cancer with familial clustering. Although we have not yet examined germ-line changes in our cases, the causal factors in familial gastric cancer, including environmental and genetic factors, may also possibly be associated with CA repeat alterations in early stages of carcinogenesis. Among the cases of gastric cancer with familial clustering, which are obviously heterogeneous entities, the cases that exhibited MSI from the early stage would be good candidates in which to pursue the genetic predisposition of gastric cancer. Early acquisition of MSI in HNPCC has been reported very recently (28). The mechanism of early acquisition of MSI in familial gastric cancer is intriguing from the standpoint of genetic defects in the mismatch repair system. Target molecule changes now under investigation will resolve this issue.

Acknowledgments

We thank Dr. Yo Kato (Cancer Institute, Tokyo, Japan) for constructive comments. This work was motivated and supported by the members of the Japanese Gastric Cancer Study Group (President, Dr. M. Nishi. Cancer Institute, Tokyo).

References

Stage-dependent evaluation of microsatellite instability in gastric carcinoma with familial clustering.

K Shinmura, W Yin, J Isogaki, et al.


Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/6/9/693

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.