A Prospective Study of Reproductive Factors, Oral Contraceptive Use, and Risk of Colorectal Cancer

Maria Elena Martinez, Francine Grodstein, Edward Giovannucci, Graham A. Colditz, Frank E. Speizer, Charles Hennekens, Bernard Rosner, Walter C. Willett, and Meir J. Stampfer

Departments of Nutrition [M. E. M., E. G., W. C. W., M. J. S.] and Epidemiology [G. A. C., C. H., W. C. W., M. J. S.], Harvard School of Public Health, Boston, Massachusetts 02115; Channing Laboratory [F. G., E. G., G. A. C., F. E. S., B. R., W. C. W., M. J. S.] and Division of Preventive Medicine and Department of Ambulatory Care and Prevention [C. H.], Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115

Abstract

To explore the roles of reproductive factors and oral contraceptive use in the etiology of colorectal cancer, we examined incident cases of colorectal cancer (n = 501) that occurred during 1,012,280 person-years of follow-up between 1980 and 1992 in the Nurses' Health Study. The women completed mailed, self-administered questionnaires every 2 years to update information on the risk factors and major medical events. In multivariate analysis, the relative risk (RR) of colorectal cancer among women who experienced menarche at age 14 or older was 0.83 (95% confidence interval (CI) = 0.64-1.08) compared with women who had menarche at age 13; whose menarche occurred under age 12 were at higher risk (RR = 1.22; 95% CI = 0.96-1.55, P for trend = 0.01). Compared with women whose first pregnancy was before age 24, the risk for colorectal cancer was significantly increased among women whose first pregnancy was at age 30 or older (RR = 1.57; 95% CI = 1.15-2.14; P for trend = 0.02). No important associations were seen for parity or age at menopause. Women who used oral contraceptives for 96 months or longer had a 40% lower risk of developing colorectal cancer (RR = 0.60; 95% CI = 0.40-0.89; P for trend = 0.02) compared with women who never used oral contraceptives. These prospective data suggest that a later age at menarche and use of oral contraceptives may reduce risk of colorectal cancer, whereas women with a later age at first pregnancy may have a higher risk.

Introduction

Interest in the role of female reproductive factors in the etiology of colorectal cancer originated from various lines of indirect evidence. Incidence and mortality rates of colon and breast cancers are positively correlated internationally (1, 2) as well as within countries (3, 4). Howell (2) has suggested that cancer of the colon may share common etiological factors with cancers of the breast and reproductive organs in women. Nuns, who experience higher-than-expected mortality rates for cancers of the breast, ovary, and uterus, have also been reported to have higher-than-expected rates of colon cancer (5). Also, in the Third National Cancer Survey (6), single women experienced a higher incidence rate of colon cancer than married women.

Several mechanisms have been hypothesized to explain the association of female hormonal factors with colorectal cancer, including modifications of estrogen profile secondary to pregnancies and their effects on bile acid metabolism (7, 8), immunological effects of pregnancies (9), and increased physical activity associated with large families (10). McMichael and Potter (7) have further proposed in a study of time trends of colon cancer mortality that the generation of women that experienced both a substantial increase in fertility in the late 1950s and exposure to early high-dose oral contraceptives in the early 1960s subsequently experienced a transient decline in colon cancer mortality.

Results of the considerable number of analytic epidemiological studies on reproductive factors and colorectal cancer have been conflicting (8-38). Previously, we have reported data on this topic based on 8 years of follow-up of this cohort, including 240 cases of colorectal cancer (15). Given the scarcity of prospective studies, we present findings of reproductive factors and oral contraceptive use based on 12 years of follow-up as they relate to cancer of the colorectum that included an additional 261 cases.

Materials and Methods

The Nurses' Health Study. The Nurses' Health Study Cohort was established in 1976 when 121,700 female, married, registered nurses ages 30-55 responded to a mailed questionnaire. The questionnaire included information about suspected and established risk factors for cancer and cardiovascular disease and a variety of health conditions, including any previous cancer. Every 2 years, follow-up questionnaires are mailed to the participants to update risk factor information and to ascertain whether major medical events have occurred. In 1980, a dietary questionnaire was included.

Study Population. The present analysis is based on 89,448 women who completed the 1980 dietary questionnaire and who had no history of cancer (except nonmelanoma skin cancer), ulcerative colitis, or Crohn's disease in 1980. In 1992, more
than 94% of the participants had responded to follow-up questionnaires. The 12-year follow-up analyses included 501 verified incident cases of colorectal cancer (396 colon and 105 rectal cancers), which accrued over the 1,012,280 person-years of follow-up.

Identification of Colorectal Cancer. The ascertainment of cases of colorectal cancer has been described in detail elsewhere (39). On each biennial follow-up questionnaire, we asked whether cancer of the colon or rectum has been diagnosed during the previous 2 years. We also used the National Death Index and the Postal Service to identify fatalities; we estimate that more than 98% of deaths were ascertained (40). When a participant (or next of kin for decedents) reported a diagnosis of cancer of the colon or rectum on our follow-up questionnaire, we asked her (or next of kin) for permission to obtain hospital records and pathology reports regarding this diagnosis. A study physician blinded to the exposure information reviewed the medical records to extract information on the histological type, the anatomic location, and the stage of the cancer. Cancers other than adenocarcinoma were excluded from analyses. We included 52 cases with missing information for anatomic location with the colon cancer group because the majority of colorectal cancers occur in the colon; analyses limited to colon cancer cases with complete information yielded results virtually identical to those of analyses including these cases.

Exposure Data. Responses to the baseline and biennial follow-up questionnaires were used to define exposure categories. Age at menarche was recorded by whole-number years; we excluded women whose reported age at menarche was ≤8 or ≥22. A complete history of oral contraceptive use, including dates of beginning and stopping use, was obtained from respondents and was categorized as never or ever (current or past use). Virtually all use in the follow-up period was past use. A history of parity was established if participants had one or more pregnancies lasting 6 months or longer; parous women were categorized by the number of pregnancies lasting 6 months or more. Age at first pregnancy was defined as age of first pregnancy lasting at least 6 months. We classified a woman as postmenopausal from the time she returned a questionnaire on which she reported natural menopause or hysterectomy with a menopause. There was no consistent pattern for the relation between age at menopause and risk of colorectal cancer. Compared with women who experienced menarche at age 13, the RR for those whose menarche occurred before age 12 was 1.22 (95% CI = 0.96–1.55), whereas that for those whose menarche occurred at age 14 or older was 0.83 (95% CI = 0.64–1.08). A statistically significant trend was observed across the categories (P = 0.01). The association between age at menarche and colon cancer was not substantially different from that for colorectal cancer, and no important association was seen for rectal cancer.

Because the proportion of nulliparous women in this cohort was low (7%), we restricted the analysis of parity to parous women. The RR for colorectal cancer for women who reported only one pregnancy lasting 6 months or more was 0.72 (95% CI = 0.48–1.07) compared with those reporting three pregnancies, whereas women who had more than four pregnancies had a RR of 1.13 (95% CI = 0.87–1.47). The P value across levels of parity was 0.10. Similar results were seen for colon and rectal cancer. No important association was seen for parity overall (RR = 1.06; 95% CI = 0.74–1.51, comparing parous to nonparous women).

Among parous women, those who reported a first pregnancy at age 30 or older had a RR for colorectal cancer of 1.57 (95% CI = 1.15–2.14) compared with those with an age at first pregnancy of under 24 (P for trend = 0.02). The corresponding RR for colon cancer was stronger (RR = 1.65; 95% CI = 1.16–2.33) and that for rectal cancer was weaker (RR = 1.24; 95% CI = 0.61–2.50).

As of 1990, 78% of the women in this cohort were postmenopausal. There was no consistent pattern for the relation between age at menopause and risk of colorectal cancer. Compared with women who experienced menopause at ages 48–51, a significantly lower risk for colorectal cancer was seen among women with an earlier age at menopause (RR = 0.56; 95% CI = 0.40–0.78) and among those with a later age at meno-

The abbreviations used are: CI, confidence interval; RR, relative risk.
Table 1: RR\(^a\) for colorectal, colon, and rectal cancer by selected reproductive factors

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Person-years(^b)</th>
<th>Colorectum</th>
<th>Colon</th>
<th>Rectum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at menarche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><12</td>
<td>225,975</td>
<td>127</td>
<td>1.22 (0.96–1.55)</td>
<td>106</td>
</tr>
<tr>
<td>12</td>
<td>268,900</td>
<td>129</td>
<td>1.00 (0.79–1.26)</td>
<td>96</td>
</tr>
<tr>
<td>13</td>
<td>309,860</td>
<td>151</td>
<td>1.00</td>
<td>121</td>
</tr>
<tr>
<td>14+</td>
<td>199,450</td>
<td>88</td>
<td>1.00</td>
<td>68</td>
</tr>
</tbody>
</table>

\(^a\) Adjusted for age, body mass index, physical activity, family history of colorectal cancer, aspirin use, cigarette smoking, alcohol consumption, intake of red meat, oral contraceptive use, postmenopausal hormone use, and the other reproductive factors.

\(^b\) Number of cases and person-years do not always add up to the total due to missing information for the risk factors.

\(^c\) Test for trend conducted by modeling the variable as a continuous variable.

\(^d\) Includes parous women only.

\(^e\) Includes postmenopausal women only.

The prevalence of use of oral contraceptives in this cohort was 32%, and virtually all use was in the past. Compared with never use, ever use of oral contraceptives was associated with a lower risk for colorectal cancer (Table 2). Women who used oral contraceptives for 96 months or more were at significantly lower risk of developing colorectal cancer compared with never users (RR = 0.60; 95% CI = 0.40–0.89; P for trend = 0.02). The results for colon cancer were not appreciably different from those of the colorectum (RR = 0.64; 95% CI = 0.40–1.02 for 96 months or more of use compared with never users). The RR for rectal cancer associated with ever use of oral contraceptives was 0.76 (95% CI = 0.49–1.18); however, there were insufficient data to examine duration of use.

The hypothesis by McMichael and Potter (7) suggests that if the hormonal effect of reproductive factors is acting by altering bile acid synthesis, the risk of colon cancer would be stronger for the proximal colon where fecal bile acids are reabsorbed. However, our data do not support this. Although we were limited by the number of cases for this analysis (237 distal and 159 proximal cases), the RRs were stronger for the distal than the proximal colon (data not shown).

Discussion

On the basis of epidemiological and animal data, McMichael and Potter (7) proposed that progestins, pregnancy, and exogenous estrogens may reduce bile acid production, thereby affecting colon carcinogenesis. Specifically, they proposed that endogenous estrogens increase colon cancer through increased bile acid production, whereas progestins, pregnancy, and high-dose oral contraceptives decrease risk of colon cancer by reducing bile acid synthesis. This mechanism is plausible given the evidence that increased concentrations of unabsorbed bile acids in the colon and their derivatives, secondary bile acids, act as promoters of colon carcinogenesis (44). A direct effect of steroid hormones on the colorectal epithelium is plausible given the identification of steroid hormone receptors in colorectal cancers and normal epithelium (45–47).

These prospective data support the inverse association between age at menarche and risk of colorectal cancer. Of the studies that have examined this association (10, 12, 15, 18, 20, 21, 26, 30–32, 36, 37), two cohort studies (10, 26) reported a weak, nonsignificant inverse relation for age at menarche and...
risk of colon cancer, and five case-control studies (20, 30, 32, 36, 37) support this inverse association. It is unknown whether the effect of age at menarche on colorectal cancer risk is mediated through a hormonal mechanism. It is possible that age at menarche is not directly related to risk of colorectal cancer, but is merely a surrogate for an unidentifiable risk factor present at or near puberty (i.e., diet, body weight/body fat, or physical activity). Abdominal-type obesity is recognizable in girls even before puberty (48), and some studies have shown this to be associated with hyperinsulinemia resulting from insulin resistance (49, 50), and an earlier onset of menarche (51). Because insulin is an important growth factor for colonic mucosal cells and colonic cancer cells in vitro, Giovannucci (52) has suggested that hyperinsulinemia is a colon cancer promoter. It is unknown, however, to what extent one or more of these factors present during puberty can alter risk of colorectal cancer decades later. Thus, the complex metabolic, endocrine, and hormonal mechanisms taking place in the pubertal period are difficult to assess in the context of colon cancer carcinogenesis.

A large number of studies have investigated the effect of parity on colon cancer risk (8–37). However, in fewer than half of the 24 case-control studies there has been evidence of a protective effect of parity (8, 9, 14, 18, 20, 23, 25, 32, 35–37) and in only four of these (8, 18, 32, 35) were the associations significant. Only two (10, 24) of the seven published cohort studies have shown an inverse, albeit nonsignificant, effect for parity and colon cancer. It is interesting that two studies (24, 25) reported a protective effect of wife's parity among males. Our results do not support a protective association for the group of parous women. All but four (22, 26, 34, 37) of the published studies of parity have used the group of nulliparous women as the referent. In the present study, eligibility criteria included being married at the time of enrollment. It is possible that the nulliparous group comprised a higher proportion of infertile women than nulliparous women from a sample that included never-married women. It has been suggested that women who are unable to bear children have a hormone profile or other features that increase the risk of colon cancer (8). Although we have limited power to assess the association with nulliparity, we have substantial power to detect an association with parity among parous women.

Our results indicate that a later age at first pregnancy is associated with almost a 60% increase in risk for colorectal cancer. These data are supported by three of the six published cohort studies (15, 24, 26), although none of these was significant. Furthermore, 7 (8, 18, 22, 25, 30, 36, 37) of the 19 case-control studies reported a positive association, but in only two (8, 22) were the results significant.

In the present study, both an earlier (<44 years) and a later (>51 years) age at menopause were significantly associated with a lower risk of developing colorectal cancer compared with the age group of 48–51 years. Results of studies that have assessed the effect of age at menopause and colon cancer risk (10, 18, 20, 23, 26, 30–32, 36, 37) have been inconsistent, with approximately half reporting nonsignificant lower risks associated with higher age at menopause (10, 18, 30–32, 36). In one of these studies (36), the shape of the association was consistent with the results of our study.

To our knowledge, this is the first study to show a significant reduction in risk of colorectal cancer associated with use of oral contraceptives. Longer duration of use was associated with the lowest risk. Only two prospective (12, 15) and six case-control studies (8, 18–19, 23, 35, 38) have reported results for use of oral contraceptives and risk of colon or colorectal cancer. All but three (12, 35, 38) are consistent with the present study, but none was statistically significant. However, only four of these (8, 15, 23, 35) assessed duration of use, and none evaluated a period longer than 5 years. The majority of these studies is limited by small study samples. Since the introduction and first widespread use of oral contraceptives in the 1960s, the hormone dosages used have decreased substantially. Most of the oral contraceptive use among the members of this cohort took place at a time when relatively high doses were common.

The results of this study provide some support to the hormonal role of colorectal carcinogenesis in women. These suggest that an earlier age at first birth, but not a higher parity, is protective for colorectal cancer. Although our data suggest an inverse association between age at menarche and colorectal cancer, it is unknown to what extent this directly influences risk. Our findings also support the hypothesis by McMichael and Potter (7), which suggests that use of exogenous hormones, including high-dose oral contraceptives, lower the risk of colon cancer. Future studies are needed to assess the relation of oral contraceptives currently available as they relate to risk of colorectal cancer. A beneficial effect could be potentially important given the current widespread use of this method of contraception.

Acknowledgments

We thank Gary Chase, Karen Corsano, Lisa Dunn, Barbara Egan, Stefanie Parker, Kate Saunders, Mark Shneyder, and Lori Ward for their expert assistance.

References

Cancer Epidemiology, Biomarkers & Prevention

A prospective study of reproductive factors, oral contraceptive use, and risk of colorectal cancer.

M E Martínez, F Grodstein, E Giovannucci, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/6/1/1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.