Short Communication

Reduced Risk of Ovarian Cancer in Women with a Tubal Ligation or Hysterectomy

Karin A. Rosenblatt, David B. Thomas, and The World Health Organization Collaborative Study of Neoplasia and Steroid Contraceptives

Abstract

Possible relationships between tubal ligation and hysterectomy and epithelial ovarian cancer were assessed in data that were collected for a multinational hospital-based case-control study conducted between 1979 and 1988. Histologically confirmed incident cases (n = 393) were compared with controls (n = 2563) matched on age, hospital, and year of interview. A nonsignificant reduction in risk was observed for tubal ligation (odds ratio [OR], 0.72; 95% confidence interval [CI], 0.48–1.08) and hysterectomy (OR, 0.58; 95% CI, 0.26–1.27). There was no trend in risk with time since tubal ligation. The possible protective effect of tubal ligation was greatest in women of parity less than four. The apparent protective effect for tubal ligation was seen only for clear cell (OR, 0.32; 95% CI, 0.046–2.50) and endometrioid (OR, 0.20; 95% CI, 0.046–1.46) tumors, suggesting a hormonal mechanism for the observed associations.

Introduction

A reduced risk of ovarian cancer has been associated with tubal ligation (1–7), although not consistently so (8–10). Possible protective effects against ovarian cancer have been observed for hysterectomy (11–13). There have been several hypothesized theories for these observations, including a screening effect (14), blockage of particles coming into contact with the ovaries (8), a decrease in the blood supply to the ovaries (1), and a decrease in uterine growth factors that may be involved in ovarian cancer development (8).

In this report, we present findings on the relationship between tubal ligation and hysterectomy and risk of ovarian cancer from a multinational study that was conducted largely in developing countries.

Subjects and Methods

The methods used in this study have been described previously (15). Briefly, newly diagnosed cases of breast, uterine cervix, uterine corpus, ovarian, and hepatobiliary cancers were identified from admissions to hospitals in nine centers in seven countries (Australia, Chile, China, Israel, Mexico, the Philippines, and Thailand). All study subjects must have been older than 15 years, born after 1925 or 1930, depending on when steroid contraceptives became available locally, and must have resided in a defined area served by the hospital of ascertainment for at least 1 year. Ascertainment of study subjects began in October 1979 and continued until 1988 in some centers. Cases were included in the analysis for this report if they had been confirmed by a reference pathologist as borderline or malignant epithelial ovarian carcinomas.

Approximately two controls of the same ages as the cases were selected for each case of the five neoplasms investigated. Women were not eligible for control selection if they had been admitted to the hospital for selected conditions that might have altered their use of steroid contraceptives or had had a previous bilateral oophorectomy or ovarian cancer. For the present study, up to eight women from this pool of controls were individually matched to each case on age, hospital, and date of diagnosis.

Of all subjects, 95.4% of cases and 95.7% of controls agreed to be interviewed. Standardized questionnaires were administered in the local language. Histological slides were sent to one reference laboratory for review by one of two pathologists. One hundred four (26.2%) of the 385 epithelial ovarian tumors were classified as borderline malignant potential, and the remaining were judged to be malignant.

Conditional logistic regression (16) was used to calculate ORs and 95% CIs as estimates of RRs. When cell sizes were small, exact logistic regression was used (17). ORs were controlled for the number of live births and oral contraceptive use along with the three matching variables (age, date of diagnosis, and center) after examining numerous variables as potential confounding factors.

Results

Because there was no significant heterogeneity of the relationships of ovarian cancer with tubal ligation (P = 0.265) or hysterectomy (P = 0.169) between centers, data from all centers were combined. A nonsignificant reduction in risk of ovarian cancer was associated with tubal ligation (Table 1). No trend with time since tubal ligation was observed, but the possible protective effect was not evident more than 20 years since the operation. The apparent association with reduced risk also was stronger if the tubal ligation was performed after age 35 years, and there is a modest trend in risk with age at tubal

1 The abbreviations used are: OR, odds ratio; CI, confidence interval; RR, relative risk.
ligation. A possible protective effect of hysterectomies was distinctly observed in many studies (1-6, 11-13, 18), and the RR estimate of less than 1 for hysterectomy has been consistently observed in many studies (1-6, 11-13, 18), and our RR estimate is less than that observed in a pooled analysis of 12 case-control studies (OR, 0.66; 95% CI, 0.50-0.85 for hospital case studies; OR, 0.88; 95% CI, 0.72-1.1 for population-based studies; Ref. 4).

Discussion

Although our results did not reach statistical significance, the RR estimate of 0.71 for women with a tubal ligation is only slightly higher than that observed in a meta-analysis of previous studies (RR, 0.63; 95% CI, 0.44-0.91; Ref. 1).

The RR estimate of less than 1 for hysterectomy has been consistently observed in many studies (1-6, 11-13, 18), and our RR estimate is less than that observed in a pooled analysis of 12 case-control studies (OR, 0.66; 95% CI, 0.50-0.85 for hospital case studies; OR, 0.88; 95% CI, 0.72-1.1 for population-based studies; Ref. 4). Our nonsignificant results could have been due to the small number of exposed subjects in this study.

Cramer and Xu (8) observed that low risk associated with sterilization was strongest for mucinous tumors (OR, 0.66; 95% CI, 0.1-1.0). In contrast, we observed the strongest apparent protective effects of tubal ligation to occur for clear cell and endometrioid tumors. Our findings may differ from those of Cramer and Xu (8) because of chance, due to the small numbers of exposed individuals within histological subtype groups.

Both Weiss et al. (19) and La Vecchia et al. (20) found that the risk for endometrioid tumors is increased after postmenopausal hormone exposure, and Cramer et al. (21) found that there was an increase in the incidence of endometrioid and clear cell carcinomas in the United States, following the period in which postmenopausal hormones were used frequently. If endogenous estrogen exposure stimulates the development of endometrioid and clear cell ovarian tumors the same way that exogenous hormone exposure does, then a reduction in the production of endogenous hormones, particularly estrogens, would specifically reduce the risk of the most estrogen-responsive ovarian tumors (i.e., endometrioid and clear cell histological types). Tubal ligations (22, 23) and hysterectomies (24) appear to inhibit the production of estrogen and progesterone by the ovary, perhaps due to the decrease in blood supply to the ovary (25). Cattanach (26) has suggested that the reduction is greater for estrogen than progesterone and that this, therefore, reduces the estrogen/progesterone ratio.

We suggest that other studies be conducted that include a standardized histological review to investigate the relationship of specific types of ovarian carcinomas to hysterectomy and tubal ligation to confirm either our findings or those of Cramer and Xu (8).

Acknowledgments

The data collection centers and the principal investigator (PI), co-investigator (CI), and pathologist (P) at each participating center, in alphabetical order by country, are: University of Sydney, Department of Public Health (Sydney, Australia), Geoffrey Berry (PI), Robert MacLennan (CI), Rodney Shearman (CI); Tatiana Jelihovsky (P), and Joan Cooper Booth (P); University of Chile, Faculty of Medicine; Hospital Jose Joaquin Aguirre, Department of Obstetrics and Gynecology and Ministry of Health, Hospital Salvador, Department of Obstetrics and Gynecology (Santiago, Chile), Ramiro Molina (PI), Luis Martinez (CI), Oriana Salas (CI), and Alfredo Dabancens (P); Shanghai Institute of Planned Parenthood Research (Shanghai, China), Chen Zhiheng (PI), Tao Yun (CI), and Hu Yong Wei (P); Chiam Sheba Medical Center, Department of Clinical Epidemiology (Tel Hashomer, Israel), Baruch Modan (PI), Elaine Ron (CI), and Esther Alfantasy.

Table 1 ORs for epithelial ovarian cancer in relation to time since and age at tubal ligation and hysterectomy WHO Collaborative Study of Steroid Contraceptives and Neoplasia. 1979-1988

<table>
<thead>
<tr>
<th>Histological cell type</th>
<th>Tubal ligation</th>
<th>Hysterectomy</th>
<th>Hysterectomy alone</th>
<th>Hysterectomy with unilateral oophorectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time since tubal ligation (yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤27</td>
<td>11</td>
<td>104</td>
<td>0.92</td>
<td>0.46-1.84</td>
</tr>
<tr>
<td>28-30</td>
<td>7</td>
<td>89</td>
<td>0.76</td>
<td>0.33-1.69</td>
</tr>
<tr>
<td>31-35</td>
<td>8</td>
<td>101</td>
<td>0.77</td>
<td>0.36-1.64</td>
</tr>
<tr>
<td>>35</td>
<td>8</td>
<td>119</td>
<td>0.59</td>
<td>0.28-1.24</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at tubal ligation (yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤27</td>
<td>11</td>
<td>104</td>
<td>0.92</td>
<td>0.46-1.84</td>
</tr>
<tr>
<td>28-30</td>
<td>7</td>
<td>89</td>
<td>0.76</td>
<td>0.33-1.69</td>
</tr>
<tr>
<td>31-35</td>
<td>8</td>
<td>101</td>
<td>0.77</td>
<td>0.36-1.64</td>
</tr>
<tr>
<td>>35</td>
<td>8</td>
<td>119</td>
<td>0.59</td>
<td>0.28-1.24</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted for parity and oral contraceptive use.

* Test for trend.

Table 2 ORs for epithelial ovarian cancer associated with tubal ligation stratified by parity WHO Collaborative Study of Steroid Contraceptives and Neoplasia. 1979-1988

<table>
<thead>
<tr>
<th>Parity</th>
<th>Tubal ligation</th>
<th>Hysterectomy</th>
<th>Hysterectomy alone</th>
<th>Hysterectomy with unilateral oophorectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never sterilized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR*</td>
<td>95% CI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>7</td>
<td>92</td>
<td>242</td>
<td>1006</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>116</td>
<td>51</td>
<td>340</td>
</tr>
<tr>
<td>4-5</td>
<td>11</td>
<td>132</td>
<td>29</td>
<td>388</td>
</tr>
<tr>
<td>>5</td>
<td>7</td>
<td>86</td>
<td>29</td>
<td>326</td>
</tr>
</tbody>
</table>

* Adjusted for oral contraceptive use; ORs calculated for tubal ligation within parity strata.

Table 3 ORs for epithelial ovarian cancer associated with tubal ligation by cell type WHO Collaborative Study of Steroid Contraceptives and Neoplasia, 1979-1988

<table>
<thead>
<tr>
<th>Histological cell type</th>
<th>Tubal ligation</th>
<th>Hysterectomy</th>
<th>Hysterectomy alone</th>
<th>Hysterectomy with unilateral oophorectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serous</td>
<td>17</td>
<td>141</td>
<td>154</td>
<td>893</td>
</tr>
<tr>
<td>Mucinous</td>
<td>15</td>
<td>139</td>
<td>91</td>
<td>578</td>
</tr>
<tr>
<td>Clear cell</td>
<td>1</td>
<td>61</td>
<td>34</td>
<td>167</td>
</tr>
<tr>
<td>Endometrioid</td>
<td>1</td>
<td>73</td>
<td>48</td>
<td>273</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>12</td>
<td>24</td>
<td>148</td>
</tr>
</tbody>
</table>

* Adjusted for parity and oral contraceptive use.

* Estimated by exact methods.
Cuevas (P1), Socorro Benavides Salazar (CI), Antonio Palet (P), and Patricia Ontiveros (P); University of the Philippines, College of Medicine (Manila, Philippines), Ruben A. Apelo (PI), Julietta R. de la Cruz (CI), Jose Baens (CI), and Benita Javier (P); World Health Organization, Special Programme of Research, Development and Research Training in Human Reproduction (Geneva, Switzerland), Susan Holck, Tim Farley, and Olav Meirik; Chiang Mai University, Faculty of Medicine (Chiang Mai, Thailand), Suporn Silpisomkosol (P1), Tieng Pardthaisong (CI), Nimit Martin (CI), WHO Collaborating Centre for Research in Human Reproduction (Bangkok, Thailand), Tanpot Boorissri (PI), Supawat Chutivongse (CI), Pramuan Virutasam (CI), Chansuda Wongchirachalai (CI), and Prasam Jimakom (P); Mahidol University, Faculty of Medicine, Siriraj Hospital, Department of Obstetrics and Gynecology, Gynaecology, Family Planning Research Unit (Bangkok, Thailand), Suporn Koetsawang (PI), Duangdao Rachawat (CI), and Nivat Chantarakul (P); Massachusetts General Hospital, Department of Pathology (Boston, MA), Robert E. Scully (Reference), and Robert H. Young (Reference); Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Coordinating Center (Seattle, WA), David B. Thomas (Study Coordinator), Karin A. Rosenblatt (Epidemiologist), and Elizabeth A. Noonan (Statistician); and University of Illinois at Urbana-Champaign, Department of Community Health (Champaign, IL), Karin Rosenblatt (Epidemiologist).

References

Reduced risk of ovarian cancer in women with a tubal ligation or hysterectomy. The World Health Organization Collaborative Study of Neoplasia and Steroid Contraceptives.

K A Rosenblatt and D B Thomas

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/5/11/933

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.