Analysis of Cytochrome P450 2E1 Genetic Polymorphisms in Relation to Human Lung Cancer

Shunji Kato, Peter G. Shields, Neil E. Caporaso, Haruhiko Sugimura, Glenwood E. Trivers, Margaret A. Tucker, Benjamin F. Trump, Ainsley Weston, and Curtis C. Harris1

Laboratory of Human Carcinogenesis [S. K., P. G. S., G. E. T., A. W., C. C. H.] and Genetic Epidemiology Branch [N. E. C., M. A. T.], Division of Cancer Etiology, National Cancer Institute, NIH, Bethesda, Maryland 20892; Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan 431-31 (H. S.); and Department of Pathology, University of Maryland, Baltimore, Maryland 21201 [B. F. T.]

Abstract

Human cancer risk assessment using molecular genetic techniques is a rapidly emerging field. Many studies suggest that both inherited and acquired genetic predispositions play an important role in carcinogenesis. Cytochrome P450 (CYP) 2E1 is involved in the metabolic activation of N-nitrosamines and other low molecular weight compounds. A recently described genetic polymorphism of CYP2E1 (DraI restriction fragment length polymorphism (RFLP)) has been associated with an increased risk of lung cancer in Japanese. We have assessed the allelic frequency of three RFLPs (PstI, Rsal, and DraI) in African-Americans (n = 109), Caucasian Americans (n = 153), and octogenarian Japanese (n = 42), and also in a United States case-control study of lung cancer (histologically confirmed lung cancer, n = 58; controls, n = 56; total, n = 114). The relationship of the CYP2E1 DraI polymorphism to other CYP2E1 polymorphisms (PstI and Rsal RFLPs) was examined. The allelic frequencies of the DraI C minor allele for all subjects was 0.09 in Caucasians, 0.09 in African-Americans, and 0.31 in Japanese. In the case-control study of lung cancer, no association of the CYP2E1 DraI genotype with lung cancer was found (odds ratio, 1.57; 95% confidence interval, 0.59–4.18). Comparison after discordant CYP2E1 genotypes suggests the presence of different haplotypes in Americans and Japanese. These results indicate that the CYP2E1 DraI RFLP is probably not a cancer risk factor in United States Caucasian or African-Americans, although statistical power is limited given the low frequency of the CYP2E1 DraI C minor allele.

Introduction

The application of molecular genetic techniques to human cancer risk assessment will likely emerge as a method of identifying subpopulations with different sensitivities to carcinogen exposure (1, 2). Specifically, the application of these techniques to the study of carcinogen activation, detoxification, and DNA repair has begun to elucidate a role for genetic predispositions (3). The capacity to metabolically activate or detoxify chemical carcinogens by CYP enzymes (4) such as CYP2E1, CYP2D6, CYP1A1, CYP1A2, and CYP3A4, or by glutathione-S-transferase M1 and N-acetyltransferase can be assessed by phenotyping (4–8) or genotyping methods (9–11). Several reports suggest that some polymorphisms are related to lung cancer risk (9, 12–16).

A RFLP of CYP2E1 may be important in human carcinogenesis if it governs the metabolic activation of N-nitrosocompounds and other low molecular weight suspect carcinogens (17). One CYP2E1 RFLP located in intron 6, revealed by Dral and identified as C (minor) alleles and D (common) alleles (18), has been associated with lung cancer in a Japanese case-control study (18). However, a mechanistic relationship of the RFLP to lung cancer remains unknown. There are two other CYP2E1 RFLPs, revealed by either Rsal or PstI (19), that are located in the transcription region of this gene and might have a biological effect. The CYP2E1 Dral and Rsal RFLPs were tested for lung cancer risk in Western populations (20, 21). There was no association with either marker in Finnish persons and for the latter in United States Caucasian and African-Americans (21). Similar data for the Dral RFLP in Americans has not been reported.

Presented herein are the results from a United States case-control study designed to explore genetic risk factors for lung cancer. The CYP2E1 Dral RFLP was studied in relation to lung cancer risk.

Materials and Methods

Subjects. Three separate groups were studied. The CYP2E1 Dral polymorphism was studied in Americans from Baltimore, Maryland, autopsy tissue donor program, Americans enrolled in a Baltimore Hospital case-control study of lung cancer, and octogenarian Japanese. The CYP2E1 PstI and Rsal RFLPs have been reported previously (21). The case-control study design has been described in more detail elsewhere (16). Briefly, cases (n = 58) were patients with histologically confirmed primary lung cancer. Two control groups were selected; one (n = 37) consisted of patients with COPD or a history of >40 pack-years of tobacco smoking (defined as average packs of cigarettes smoked/day

2 The abbreviations used are: CYP, cytochrome P450; RFLP, restriction fragment length polymorphism; OR, odds ratio; PCR, polymerase chain reaction; CI, confidence interval; COPD, chronic obstructive pulmonary disease.

Received 4/18/94; revised 6/14/94; accepted 6/17/94.

1 To whom requests for reprints should be addressed, at National Cancer Institute, Laboratory of Human Carcinogenesis, Division of Etiology, Building 37, Room 2C16, Bethesda, MD 20892.
CYP2E1 Genetic Polymorphisms in Lung Cancer

allowed for adjustment by age, gender, race, and tobacco usage. Tissues from the autopsy donor program were collected between 1985 and 1992. Autopsy cases were accrued from the medical examiners office, mostly from victims of sudden death (trauma, coronary artery disease, etc.). None were found to have cancer at autopsy.

were collected between 1985 and 1992. Autopsy cases (n = 42) were obtained from residents of a nursing home in Tokyo whose ages ranged from 80 to 102. Most had chronic medical problems but only seven had cancer (two with lung cancer). These cancer cases were included in the analysis because this is representative of a Japanese octogenarian population. DNA from autopsy donors and Japanese were used to determine gene frequencies in these groups only and not to serve as a control group to lung cancer cases.

CYP2E1 Restriction Fragment Length Polymorphism Analysis. DNA (blood buffy coat for case-control study subjects and Japanese; lung tissue from autopsy donors) was isolated by phenol extraction methods as described previously (22). PCR was used to amplify intron 6 of CYP2E1 that includes the Dral enzyme recognition site. Genomic DNA (0.1 μg) was amplified with primers flanking intron 6 of CYP2E1 and the Dral RFLP (0.8 μm), position 7367-7387 (5'-TCGT-CAGTTCTGGAAGCAGG) and 8340-8361 (5'-GAG-CTCTGATGCAAGTATCGCA) in buffer [10 mM Tris-HCl-50 mM KCl-2 mM MgCl2 (pH 8.3)] with 2'-deoxynucleoside-3'-triphosphate (1.875 mM; Pharmacia, Piscataway, NJ) and Taq polymerase (2.5 units; Perkin Elmer Cetus, Norwalk, CT) in a total volume of 50 μl. An initial melting temperature of 94°C (4 min) was followed by 35 cycles of melting (94°C, 1 min), annealing (60°C, 1 min), and extension (72°C, 4 min). The reaction yielded a 995-base pair fragment. A portion of the PCR-amplified product (20 μl) was subjected to a Dral restriction enzyme digestion (10 units; New England Biolabs, Inc., Beverly, MA) in buffer [50 mM potassium acetate-20 mM tris-acetate-10 mM magnesium acetate-1 mM dithiothreitol (pH 7.9)] at 37°C for 18 h. The samples were then analyzed by agarose gel electrophoresis (2.2%). The three possible genotypes are shown:

Table 1 Ethnic distributions of CYP2E1 Dral restriction fragment length polymorphisms

<table>
<thead>
<tr>
<th>Race</th>
<th>Source</th>
<th>Allelic Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No.</td>
</tr>
<tr>
<td>Caucasian8</td>
<td>Autopsy</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Lung Cancer</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Pooled</td>
<td>153</td>
</tr>
<tr>
<td>African-Americans8</td>
<td>Autopsy</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Lung Cancer</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Pooled</td>
<td>109</td>
</tr>
<tr>
<td>Japanese8</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

* D, major allele; CYP2E1 Dral restriction site present; C, minor allele: restriction site absent.
* Pooled Caucasian and African-American: X2 = 25.2, df = 1, P > 0.05; Japanese and Caucasian: X2 = 25.2, df = 2, P < 0.05; Japanese and African-American: X2 = 23.1, df = 2, P < 0.05.
* DNA samples obtained from autopsy tissue donor program.
* Parentheses indicate number of alleles.
* DNA samples obtained from case-control study of lung cancer.
* DNA samples obtained from Japanese octogenarians and older.

Table 2 Characteristics of lung cancer case-control study subject

<table>
<thead>
<tr>
<th>Cases</th>
<th>COPD</th>
<th>Other cancer</th>
<th>Pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject number</td>
<td>58</td>
<td>38</td>
<td>18</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>64</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>Pack-years (mean)</td>
<td>60</td>
<td>65</td>
<td>48</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>56/2</td>
<td>37/1</td>
<td>14/4</td>
</tr>
<tr>
<td>Caucasians (%)</td>
<td>47</td>
<td>53</td>
<td>44</td>
</tr>
</tbody>
</table>

* Subjects with cancer at anatomical sites other than lung or urinary bladder.
* Average of cigarettes smoked/day multiplied by the number of years consumed (lifetime).

available (23). Crude ORs were virtually unchanged by adjusting for these factors; therefore, only crude ORs are presented.
Results

Samples subjected to PCR and Dral enzymatic digestion revealed the expected fragment lengths, resulting in three possible patterns (Fig. 1). DNA from 148 nonmalignant lung tissues from noncancer donors obtained at autopsy and 156 buffy coat samples (114 from the United States lung cancer case-control study and 42 Japanese) were studied. The allelic distribution in Caucasians, African-Americans, and Japanese is presented in Table 1. The characteristics of subjects in the case-control study are listed in Table 2. The mean age of the Japanese was 86.4. The frequencies for the CYP2E1 minor and common alleles, pooling autopsy lung and case-control study samples, were not statistically different in Caucasians and African-Americans (\(\chi^2 = 2.51, P > 0.05 \)) but were different from the Japanese (\(\chi^2 = 25.2, P < 0.05 \) for Caucasians; \(\chi^2 = 23.1, P < 0.05 \) for African-Americans). The genotype frequency in the Japanese octogenarians was similar to that reported previously for younger populations (18). In all groups (by race and diagnosis), the allelic frequencies met Hardy-Weinberg equilibrium.

Cancers and controls in the lung cancer study had similar mean ages, smoking history, and racial distribution (Table 2). The distribution of genotypes by cases and controls is presented in Table 3. No homozygous CC (minor genotype) individuals were found. There was no statistical difference in frequency by case status between DD (minor genotype) and CD genotypes (\(\chi^2, 0.81; df, 1; P > 0.05 \); odds ratio, 1.57; 95% CI, 0.59–4.18). Subset analysis by race still did not show an association of the CYP2E1 genotype and lung cancer. The odds ratio for the CD heterozygote genotype was 1.24 (95% CI, 0.25–6.14) in African-Americans and 1.93 (95% CI, 0.66–5.65) in Caucasians. When characterized by smoking status (defined as less or more than the median pack-years; 53 pack-years), there was still no association with lung cancer (Table 4). Subset analysis by histological diagnosis (Table 5), tumor stage, or grade was not associated with genotype (data not shown). The risk associated with the CYP2E1 genotype remained relatively unchanged after adjustment for age, race, tobacco use, and gender (OR, 1.93; 95% CI, 0.66–5.65).

The distribution of the Dral CYP2E1 RFLP was compared to the CYP2E1 Psfl and Rsal in the United States and Japanese samples (Table 6). Multiple haplotypes were observed, which indicates the presence of different haplotypes in Americans and Japanese, although it is not possible in
this limited sample size to identify all possible haplotypes. Thus, the presence of the major or minor DraI allele did not consistently predict the presence of a particular PstI allele in Americans or Japanese.

Discussion

Herein we describe an analysis of a CYP2E1 DraI RFLP in relation to lung cancer. The CYP2E1 RFLP was not related to lung cancer in this United States population, even when subjects were stratified by tobacco use or race.

The present study contrasts with a previous Japanese report (18) of lung cancer risk and the CYP2E1 DraI RFLP. There are several possible explanations for this. According to the Japanese results, excess CC (minor) genotypes were found in controls but not in lung cancer. This could not be examined in American subjects, due to the absence of persons with the CC (minor) genotype. The power of our study to detect a significant excess is therefore limited and so these findings alone cannot exclude an association. Separately, the Japanese findings might represent a chance association in that when the Japanese data are analyzed by allelic frequency, the difference between cases and controls is not statistically significant. Lastly, there may be inherent differences in Japanese and Americans due to genetic heterogeneity. Specifically, the risk for the DD (common) genotype might only exist as a risk factor in conjunction with other genetic or environmental factors unique to Japanese. However, this study is consistent with other reports (20) and, taken together, strongly suggest that this polymorphism will not constitute an important risk factor for lung cancer in Caucasians or African-Americans.

While this study fails to find an association for the CYP2E1 DraI genetic polymorphism and lung cancer, several factors exist that might account for a falsely negative result: (a) The low frequency of the CYP2E1 DraI C minor allele limits the statistical power of the study as discussed above; (b) a majority of control subjects had COPD because the study was designed to test biomarkers that predict only why some smokers get lung cancer and others do not. If CYP2E1 was a risk factor for both lung cancer and COPD, then the control group would not be appropriately selected; and (c) cases and controls generally were heavy smokers so that the risk factor of smoking might significantly outweigh a lesser risk factor such as this genetic polymorphism, similar to that observed in Japanese with different CYP1A1 genotypes, smoking status, and lung cancer (12). In summary, the lack of an association of the CYP2E1 DraI RFLP, located in intron 6, with lung cancer in an United States population is contrasted with the results of a previous Japanese study (18). Further studies in Japanese subjects are needed to clarify the role, if any, of the CYP2E1 RFLP in lung cancer development.

Acknowledgments

The authors wish to thank Elise D. Bowman for technical assistance. Japanese blood samples were kindly provided by Dr. Koichiro Otsubo (Department of Clinical Pathology, Tokyo Metropolitan Gerontology Center, Tokyo, Japan). The contribution of the following hospitals is greatly appreciated: The University of Maryland; Loch Raven Veterans Administration, Union Memoria; St. Agnes, Sinai, Harbor Center, Mercy Medical Center, and Baltimore County. We also thank Dorothy Dudek for her skillful editorial assistance.

References

Analysis of cytochrome P450 2E1 genetic polymorphisms in relation to human lung cancer.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/3/6/515

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.