Hepatitis B and C Virus Infection and Risk of Pancreatic Cancer: A Population-Based Cohort Study (JPHC Study Cohort II)

Sarah Krull Abe; Manami Inoue1,2, Norie Sawada2, Motoki Iwasaki2, Taiki Yamaji2, Shizuka Sasazuki2, for the JPHC Study Group; Eiko Saito1,2, Yasuhito Tanaka3, Masashi Mizokami4, and Shoichiro Tsugane2, for the JPHC Study Group

Abstract

Background: The aim of this study was to assess the association between hepatitis B virus (HBV) and hepatitis C virus (HCV) and the risk of pancreatic cancer among Japanese adults.

Methods: A total of 20,360 subjects of the Japan Public Health Center (JPHC)–based prospective study cohort II with available data on HBV and HCV infection status from blood samples were followed up until the end of 2010 for an average of 16 years. Cox proportional hazards models were employed to calculate HRs and 95% confidence intervals (CI).

Results: During 324,394 person-years, 116 newly diagnosed cases of pancreatic cancer were identified. Compared with individuals without a positive infection marker, the multivariate-adjusted HRs were 1.22 (95% CI, 0.81–1.84) for anti-HBc and 0.69 (95% CI, 0.28–1.69) for anti-HCV. There were no pancreatic cancer cases among HBsAg-positive participants.

Conclusion: In the JPHC study, we did not observe a statistically significant association between hepatitis B or C and the risk of pancreatic cancer.

Impact: Our results do not support an association between hepatitis B or C and the risk of pancreatic cancer.

Cancer Epidemiol Biomarkers Prev; 25(3); 555–7. ©2015 AACR.

Introduction

A recent meta-analysis including studies conducted in China, South Korea, Taiwan, and the United States found chronic hepatitis B and C virus infection increased the risk of pancreatic cancer (1). Another Taiwanese study found null results (2). The status of hepatitis B virus (HBV) and hepatitis C virus (HCV) infection is different between Japan and other countries. The aim of this study was to, for the first time in Japan, assess the association between chronic infection of hepatitis virus and pancreatic cancer risk in the Japan Public Health Center (JPHC)–based prospective study.

Materials and Methods

Details of the study design (3), questionnaire, blood checkup and laboratory analysis, and follow-up information have been detailed in a previous article (4). The study protocol was approved by the Institutional Review Board of the National Cancer Center, Japan (approval number: 13-021, 16-59). We restricted subjects to those who responded to the questionnaire and provided their blood (n = 20,887). We further excluded those with unavailable data on HCV and HBV infection status from the blood samples (n = 68) and those with a history of cancer (n = 459). Finally, a total of 20,360 individuals were included in this analysis. Details of cancer incidence identification have also been described elsewhere (4). A total of 116 incident pancreatic cancer cases (C25) were identified.

Plasma samples were screened for hepatitis B surface antigen (HBsAg) by reverse passive hemagglutination (R-PHA). Antibodies against hepatitis B core antigen (anti-HBc) were analyzed by R-PHA with a commercial kit common in Japan. For anti-HCV antibody (anti-HCV), a third-generation immunoassay was applied (4).

Person-years of follow-up from the date of baseline survey were calculated until the date of diagnosis of pancreatic cancer, date of death, move from the public health center area, or December 31st 2010, whichever occurred first. Statistical analyses were performed using Stata version 13 (StataCorp). Multivariate-adjusted HRs and corresponding 95% confidence intervals (CI) of pancreatic cancer were calculated for HBsAg, anti-HBc, and anti-HCV by Cox proportional hazards model. In model 1, we adjusted for sex, year of age at baseline (40–49, 50–54, 55–59, 60–64, and 65–69), and study area (six areas treated as strata). In model 2, we additionally adjusted for body mass index (<25.0 kg/m², 25.0–26.9 kg/m², and ≥27.0 kg/m²), diabetes (yes or no), and smoking status (never, former, and current). In model 3, we replaced follow-up time with age as the time scale due to the strong association with pancreatic cancer risk.
Results
Among 20,360 participants, 116 pancreatic cancer cases were identified after a mean follow-up of 16 years (324,394 person years). Basic study characteristics have been reported by Abe and colleagues (4). Hepatitis B and C were not statistically significantly associated with the risk of developing pancreatic cancer. Compared with individuals without a positive infection marker, the multivariate-adjusted HRs were 1.22 (95% CI, 0.81–1.84) for anti-HBc and 0.69 (95% CI, 0.28–1.69) for anti-HCV (Table 1). There were 0 pancreatic cancer cases among participants with a positive HBsAg marker.

Discussion
We did not observe a significant association between anti-HBc, a marker for past HBV exposure, and anti-HCV antibodies and the risk of pancreatic cancer in this large Japanese population-based cohort study. This study did not find cases among HBsAg-positive, hepatitis B-positive, HBV carrier, and subjects. In contrast to our study, a previous meta-analysis, predominantly case-control studies, in other Asian countries found HBsAg and anti-HCV antibodies increased the risk of pancreatic cancer (1). Additional studies in Korea and Sweden also suggested anti-HCV antibodies could be associated with an increased risk (5, 6), while a recent study in Taiwan found null results for all antibody variations (2).

Established risk factors of pancreatic cancer such as tobacco smoking, chronic pancreatitis, obesity, and diabetes account for <50% of cases (7). Some mechanisms have been proposed by Michaud (8). Inflammation is critical in the development of pancreatic carcinogenesis, but the causes other than pancreatitis are unclear. Michaud postulates that infections may influence tumor progression rather than initiation. Anti-HBc—positive status, the serobiologic marker of past exposure to HBV, had an increased risk of developing pancreatic cancer.

Strengths and limitations to the study have been described by Abe and colleagues (4). Briefly, strengths include the large sample, high response rate, and low loss to follow-up and relatively long years of follow-up. Limitations include the mainly nonmetropolitan population, relatively limited number of pancreatic cancer cases, the voluntary nature of the blood samples, the lack of potential exposures related to HBV and HCV in the survey, and not combining anti-HBc and HBsAg in HBV infection due to the concept of seroconversion.

Further research, especially for HBsAg, is needed to confirm our results. Particularly, regional pooled analysis of cohort studies may be useful due to the relatively small number of cases per positive infection marker.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.
and I. Saito, Ehime University, Ehime; N. Yasuda, Kochi University, Kochi; S. Kono, Kyushu University, Fukuoka; S. Akiba, Kagoshima University, Kagoshima; T. Isobe, Keio University; Y. Sato, Tokyo Gakugei University.

Grant Support
This work was supported by National Cancer Center Research and Development Fund [23-A-31(toku), 26-A-2; since 2011; to S.K. Abe, M. Inoue, N. Sawada, M. Iwasaki, T. Shimazu, T. Yamaji, E. Saito, S. Sasazuki, and S. Tsugane]; a Grant-in-Aid for Cancer Research (from 1989 to 2010; to M. Inoue and S. Tsugane); and Research on Hepatitis (H18-Kannen-Ippan-003) from the Ministry of Health, Labour, and Welfare of Japan (to M. Inoue).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received October 20, 2015; revised November 23, 2015; accepted December 18, 2015; published OnlineFirst December 29, 2015.

References
Hepatitis B and C Virus Infection and Risk of Pancreatic Cancer: A Population-Based Cohort Study (JPHC Study Cohort II)

Sarah Krull Abe, Manami Inoue, Norie Sawada, et al.


Updated version

Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-15-1115

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.