Periodontal Disease and Breast Cancer: Prospective Cohort Study of Postmenopausal Women

Jo L. Freudenheim, Robert J. Genco, Michael J. LaMonte, Amy E. Millen, Kathleen M. Hovey, Xiaodan Mai, Ngozi Nwizu, Christopher A. Andrews, and Jean Wactawski-Wende

Abstract

Background: Periodontal disease has been consistently associated with chronic disease; there are no large studies of breast cancer, although oral-associated microbes are present in breast tumors.

Methods: In the Women’s Health Initiative Observational Study, a prospective cohort of postmenopausal women, 73,737 women without previous breast cancer were followed. Incident, primary, invasive breast tumors were verified by physician adjudication. Periodontal disease was by self-report. HRs and 95% confidence intervals (CI) were estimated by Cox proportional hazards, adjusted for breast cancer risk factors. Because the oral microbiome of those with periodontal disease differs with smoking status, we examined associations stratified by smoking.

Results: 2,124 incident, invasive breast cancer cases were identified after mean follow-up of 6.7 years. Periodontal disease, reported by 26.1% of women, was associated with increased breast cancer risk (HR 1.14; 95% CI, 1.03–1.26), particularly among former smokers who quit within 20 years (HR 1.36; 95% CI, 1.05–1.77). Among current smokers, the trend was similar (HR 1.32; 95% CI, 0.83–2.11); there were few cases (n = 74) and the CI included the null. The population attributable fraction was 12.06% (95% CI, 1.12–21.79) and 10.90% (95% CI, 10.31–28.94) for periodontal disease among former smokers quitting within 20 years and current smokers, respectively.

Conclusion: Periodontal disease, a common chronic inflammatory disorder, was associated with increased risk of postmenopausal breast cancer, particularly among former smokers who quit in the past 20 years.

Impact: Understanding a possible role of the oral microbiome in breast carcinogenesis could impact prevention.

Introduction

Periodontal disease is a highly prevalent, chronic condition characterized by altered oral microbiota and a proinflammatory environment (1). It has been found to be associated with increased risk of systemic chronic diseases, including heart disease (2, 3), stroke (4), and diabetes (5). While there has been less study of the association of periodontal disease with cancer, there is evidence that those with the disease are at increased risk of oral, esophageal, head and neck, pancreatic, and lung cancers (6–10). There has been limited study of periodontal disease and breast cancer. In three prospective studies, there was a nonstatistically significant increased risk of breast cancer among those with periodontitis; all three were small in size and limited in power (11–13). We examined the association between self-reported periodontal disease history and breast cancer risk in the Women’s Health Initiative Observational Study (WHI OS), a large prospective cohort of postmenopausal women in the United States.

Materials and Methods

Study population

The WHI OS has been described in detail elsewhere (14, 15). Briefly, it is a prospective cohort study of 93,676 postmenopausal women, volunteers aged 50 to 79 years, enrolled at 40 centers throughout the United States between 1994 and 1998. The study was approved by the Institutional Review Boards of each of the centers and written informed consent was obtained from all participants before participation in the study.

Ascertainment of study exposures and outcomes

Study participants completed extensive self-administered questionnaires, physical examinations, and blood collection (16, 17). Participants have been followed annually to ascertain additional exposure information and to determine changes in health status. History of periodontal disease diagnosis was determined on a questionnaire completed at year five of follow-up. Included in the analyses reported here were study participants who completed the questionnaire regarding periodontal disease and who had no history of breast cancer at the time of the periodontal disease
report (n = 73,737). Excluded were women who did not complete the questionnaire (n = 11,262), did not complete the dental questions (n = 1,208), had been diagnosed with breast cancer prior to year five (n = 6,621), or were lost to follow-up (n = 848). For these analyses, participants were followed through September 30, 2010.

Diagnosis of breast cancer among study participants was determined by self-report on questionnaires collected annually (18) and were verified by review of medical records by trained physician adjudicators using the International Classification of Diseases for Oncology, second edition (ICD-O-2) and classified using guidelines from the Surveillance, Epidemiology, and End Results program (19). Data collected included tumor type, stage, nodal status, tumor size, estrogen receptor (ER), progesterone receptor (PR), and HER2 status. There were 2,124 diagnosed cases of breast cancer, periodontal disease status was not associated with breast cancer, personal history of diabetes, stroke, and myocardial infarction, frequency of dental visits, second-hand smoke exposure, and edentulism.

Because smoking is associated with periodontal disease (21), we examined control for the potential impact of smoking on the association between periodontal disease and breast cancer risk using several approaches. We examined smoking modeled as smoking status (current/former/never), as years smoked and packs per day entered separately, as pack-years of smoking (alone). Because there might be differences in the oral microbiota with periodontal disease for smokers compared to nonsmokers (22, 23), we examined models stratified on smoking status.

In addition, we examined models excluding all women with any history of cancer, and excluding those diagnosed with breast cancer in the year after the ascertainment of periodontal disease status. We examined multiplicative interaction of the association of periodontal disease and breast cancer by age, race, family history of breast cancer, BMI, physical activity, use of hormone therapy, alcohol, and NSAIDs by calculation of the P for the multiplicative interaction term. We examined models stratified by ER status, edentulism, frequency of dental visits, and mammography, examining differences in the strata by calculation of the P for the multiplicative interaction term.

Finally, we determined population attributable fraction of incident breast cancer among those with a history of periodontal disease, computed as $P_p \left(1 - \frac{1}{HR_{adj}} \right)$ where P_p is the prevalence of periodontal disease among the breast cancer cases and HR_{adj} is the multivariable-adjusted HR for the association of periodontal disease and breast cancer (24, 25). All statistical analyses were performed in SAS 9.3 (SAS Institute).

Results

Characteristics of study participants are shown in Tables 1 and 2. Because of the large sample, several comparisons were significantly different although differences were small. Mean follow-up time was slightly longer (0.2 years) among those with periodontal disease compared with those without. Approximately 26% of all participants reported having been told that they had periodontal disease, 21% of never smokers, 30% of former smokers, and 38% of current smokers (data not shown). Those without periodontal disease were on average 0.9 years older than those with the disease. There were statistically significant differences between those with periodontal disease and those without for age at menopause, education, race/ethnicity, age at menarche, age at first birth, parity, mammography, hormone therapy, alcohol consumption, routine dental visits, edentulism, and smoking. Among those with invasive breast cancer, periodontal disease status was not associated with tumor characteristics (Table 3).

The association of periodontal disease and invasive breast cancer is shown in Table 4. There was a significant increase in risk of invasive breast cancer among those reporting a history of periodontal disease; the adjusted HR was 1.14 (95% CI, 1.03–1.26); it was somewhat weaker with adjustment for smoking.
Follow-up (years)\(^6\) 6.7 ± 2.7 6.8 ± 2.6 6.6 ± 2.7 <0.001
Age (year 5) 68.7 ± 7.2 68.1 ± 7.0 69.0 ± 7.3 <0.001
BMI (kg/m\(^2\)) 27.3 ± 5.8 27.3 ± 5.8 27.3 ± 5.8 0.29
Physical activity (MET hours/week) 13.3 ± 13.8 13.4 ± 13.6 13.3 ± 13.9 0.34

Education
- High school diploma 14,770 (20.2) 2,982 (15.6) 11,788 (21.8) <0.001
- College or some college 35,342 (48.3) 9,088 (47.5) 26,254 (48.6)
- Post-graduate 23,058 (31.5) 7,048 (36.9) 16,010 (29.6)

Race
- American Indian/Alaskan Native 304 (0.4) 75 (0.4) 229 (0.4) <0.001
- Asian/Pacific Islander 2,096 (2.9) 459 (2.4) 1,637 (3.0)
- Black 4,895 (6.7) 1,483 (7.7) 3,412 (6.3)
- White, not of Hispanic origin 63,062 (85.7) 16,447 (85.6) 46,615 (85.8)
- Unknown 816 (1.1) 216 (1.1) 600 (1.1)

Any aspirin or nonsteroidal anti-inflammatory use, year 3
- <1 year current use 44,551 (66.5) 11,750 (67.0) 32,801 (66.3) 0.06
- 1 or more years current use 22,476 (33.5) 5,777 (33.0) 16,699 (33.7)

Alcohol consumption past 3 months, year 3
- None 21,829 (31.0) 4,910 (26.8) 16,919 (32.5) <0.001
- <1/2 drink/day 30,932 (44.0) 8,121 (44.3) 22,811 (43.8)
- ≥1/2 drink/day 17,613 (25.0) 5,306 (28.9) 12,307 (23.7)

Routine dental check-ups
- 2 or more times per year 50,183 (73.1) 14,939 (77.6) 35,244 (64.7) <0.001
- Once per year 11,090 (15.9) 1,802 (9.4) 9,288 (17.1)
- Less than once per year 2,107 (3.0) 468 (2.4) 1,639 (3.0)
- Never in past three years 4,580 (6.5) 867 (4.5) 3,713 (6.8)
- Whenever needed 5,777 (8.3) 1,186 (6.2) 4,591 (8.4)

Edentulous
- Yes 5,059 (6.9) 1,089 (5.7) 3,970 (7.5) <0.001
- No 68,678 (93.1) 18,173 (94.3) 50,505 (92.7)

Smoking status, year 5
- Never smoked 37,376 (51.3) 7,941 (41.7) 29,435 (54.7) <0.001
- Former smoker 32,400 (44.5) 9,000 (47.5) 22,500 (41.8)
- Current smoker 3,087 (4.2) 1,180 (6.2) 1,907 (3.5)
- Former smokers, years since quit, year 5
 - Quit ≥20 years ago 23,524 (73.1) 6,622 (67.3) 16,902 (75.7) <0.001
 - Quit <20 years ago 8,638 (26.9) 3,299 (32.7) 5,419 (24.3)

Smokers, pack-years, year 5
- <5 11,474 (33.7) 2,834 (26.6) 8,640 (36.9) <0.001
- 5–24 11,242 (33.0) 3,431 (32.2) 7,811 (33.4)
- ≥24 11,355 (33.3) 4,405 (41.3) 6,950 (29.7)

NOTE: Number of missing data for BMI, n = 122; physical activity, n = 228; education, n = 567; race, n = 188; any aspirin or NSAID use, year 3, n = 6,710; alcohol consumption, n = 3,363; smoking status, n = 874; years since quit, n = 238; pack-years 1,724.

\(^5\)P value for Student t test for continuous variables and for \(\chi^2\) test for categorical variables.

\(^6\)Follow-up from year 5 to breast cancer, end of follow-up period or death in years.
Table 2. Participant reproductive characteristics by periodontal disease, WHI OS

<table>
<thead>
<tr>
<th></th>
<th>Total (n = 73,737)</th>
<th>Yes (n = 19,262)</th>
<th>No (n = 54,475)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at menopause</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td>0.01</td>
</tr>
<tr>
<td>Age at menarche</td>
<td>48.3 ± 6.2</td>
<td>48.4 ± 6.1</td>
<td>48.3 ± 6.2</td>
<td></td>
</tr>
<tr>
<td>Age at first birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never pregnant or never had term</td>
<td>9.196 (12.6)</td>
<td>2.664 (13.9)</td>
<td>6.532 (12.1)</td>
<td><0.001</td>
</tr>
<tr>
<td><20</td>
<td>7.983 (10.9)</td>
<td>2.009 (10.5)</td>
<td>5.974 (11.0)</td>
<td></td>
</tr>
<tr>
<td>20–29</td>
<td>50.519 (69.0)</td>
<td>12.918 (67.5)</td>
<td>37.601 (69.5)</td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never pregnant or never had term</td>
<td>9.196 (12.6)</td>
<td>2.664 (13.9)</td>
<td>6.532 (12.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>1–2</td>
<td>26.011 (35.5)</td>
<td>7.090 (37.1)</td>
<td>18.921 (35.0)</td>
<td></td>
</tr>
<tr>
<td>3–4</td>
<td>28.544 (39.0)</td>
<td>7.237 (37.8)</td>
<td>21.307 (39.4)</td>
<td></td>
</tr>
<tr>
<td>>5</td>
<td>9,494 (13.0)</td>
<td>2.139 (11.2)</td>
<td>7,355 (13.8)</td>
<td></td>
</tr>
<tr>
<td>Family history of breast cancer</td>
<td>Yes</td>
<td>13,173 (18.8)</td>
<td>3,427 (18.8)</td>
<td>9,746 (18.9)</td>
</tr>
<tr>
<td>No</td>
<td>56,777 (81.2)</td>
<td>14,803 (81.2)</td>
<td>41,974 (81.1)</td>
<td></td>
</tr>
<tr>
<td>Mammograms in last 5 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–3</td>
<td>22,544 (32.9)</td>
<td>5,777 (32.0)</td>
<td>16,767 (33.2)</td>
<td>0.005</td>
</tr>
<tr>
<td>>3</td>
<td>46,065 (67.1)</td>
<td>12,265 (68.0)</td>
<td>33,800 (66.8)</td>
<td></td>
</tr>
<tr>
<td>Hormone use at year 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never used hormones</td>
<td>20,318 (28.4)</td>
<td>5,228 (27.9)</td>
<td>15,090 (28.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Former E-alone user</td>
<td>7,270 (10.2)</td>
<td>1,684 (9.0)</td>
<td>5,586 (10.6)</td>
<td></td>
</tr>
<tr>
<td>Current E-alone user</td>
<td>15,508 (21.7)</td>
<td>3,893 (21.8)</td>
<td>11,615 (22.0)</td>
<td></td>
</tr>
<tr>
<td>Former E+P user</td>
<td>12,935 (18.1)</td>
<td>3,521 (18.8)</td>
<td>9,414 (17.8)</td>
<td></td>
</tr>
<tr>
<td>Current E+P user</td>
<td>15,526 (21.7)</td>
<td>4,394 (23.5)</td>
<td>11,132 (21.1)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Number of missing data for age at first birth and parity, n = 492; family history of breast cancer, n = 3,847; mammogram in last 5 years, n = 5,128; hormone use at year 5, n = 2,860.

*P value for Student t test for continuous variables and for χ² test for categorical variables.

Discussion

In the WHI OS, a large, well-characterized prospective cohort of postmenopausal women, reported history of diagnosis of periodontal disease was associated with primary, invasive breast cancer. Among former smokers who had quit smoking in the previous 20 years, there was a 36% increase in risk. The association was similar among current smokers but the number of women in this category was smaller; the CI was wider and included the null. These findings are consistent with a role of chronic inflammation in breast cancer risk and point to a possible role of the oral microbiome in breast cancer etiology and prevention.

Study strengths and limitations should be taken into account in interpretation of these findings. Strengths of the study include the prospective design, the completeness of follow-up, the large population size and the well-characterized cohort such that we were able to examine both confounding and interaction by known risk factors. Adjudication of all incident breast cancer cases ensured that there is little misclassification in outcome measures. Furthermore, because this is a generally health conscious cohort that receives frequent medical care, data regarding other breast cancer risk factors, while again by self-report, is generally well measured.

This study was limited to postmenopausal women; findings can only be generalized with confidence to that group. Furthermore, the volunteer participants in the WHI observational cohort tended to have some difference in their health behaviors. Prevalence of several periodontal disease risk factors including smoking, diabetes, and obesity were lower in the study than in the general population. While these differences may limit study generalizability, there is no reason to think that the biologic processes would be different. Another potential limitation is the possibility of confounding in estimates of risk. While we examined potential confounding by all known risk factors for breast cancer and periodontal disease, there may be additional unknown confounders. There could also be residual confounding by smoking, by education, or socioeconomic status. Pack-years measure of smoking history is closely correlated with severity of periodontal disease; adjusting for it may be over control and result in an underestimate of the association between periodontal disease and breast cancer risk. On the other hand, residual confounding by

smoking might explain some of the observed association. Smoking is strongly associated with periodontal disease; the association with breast cancer is weaker (26). With regard to education, it might also affect results if less educated women received less dental care and were not aware of their periodontal disease status. Even if true, such an association would not likely impact results greatly given that there is not a lot of variability in the cohort for these factors; the cohort is highly educated and largely receives regular dental care. Only 4% of participants had less than high school education and more than 80% had a routine dental checkup at least annually. Another issue is the determination of exposure to periodontal disease. In a subsample of 838 women in Sweden, there was a statistically significant increase in breast cancer among those with periodontal disease assessed by a clinical exam; again the number of breast cancer cases was small, only 24 (13). Finally, in a prospective study of approximately 15,000 twin pairs, there was a nonsignificant increase in breast cancer risk of 12%. The latter study included 531 cases. In that study, the measure of periodontal disease was of tooth mobility, a measure with good specificity but poor sensitivity (12).

There are several potential mechanisms that could explain the observed association of periodontal disease with breast cancer. It could be that periodontal pathogens directly impact carcinogenesis. Bacteria from the oral cavity enter the blood stream following

Table 3. Characteristics of invasive breast tumors (stage, lymph node involvement, tumor size, ER, PR, and HER2 status), by periodontal disease status, WHI OS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total (n = 2,124)</th>
<th>Yes (n = 616)</th>
<th>No (n = 1,508)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localized</td>
<td>1,590</td>
<td>454 (75.3)</td>
<td>1,136 (76.7)</td>
<td>0.51</td>
</tr>
<tr>
<td>Regional or distant</td>
<td>495</td>
<td>149 (24.7)</td>
<td>346 (23.3)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>39</td>
<td>13</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Nodal status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>1,445</td>
<td>418 (75.2)</td>
<td>1,027 (76.5)</td>
<td>0.53</td>
</tr>
<tr>
<td>Positive</td>
<td>455</td>
<td>138 (24.8)</td>
<td>317 (23.5)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>226</td>
<td>60</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>Tumor size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2 cm</td>
<td>1,431</td>
<td>414 (71.6)</td>
<td>1,017 (71.8)</td>
<td>0.54</td>
</tr>
<tr>
<td>2–4.9 cm</td>
<td>498</td>
<td>141 (24.4)</td>
<td>357 (25.2)</td>
<td></td>
</tr>
<tr>
<td>≥5 cm</td>
<td>62</td>
<td>23 (4.0)</td>
<td>39 (2.6)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>129</td>
<td>38</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>ER/PR status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER+ PR+</td>
<td>1,391</td>
<td>405 (70.9)</td>
<td>986 (69.7)</td>
<td>0.67</td>
</tr>
<tr>
<td>ER+ PR–</td>
<td>290</td>
<td>87 (15.2)</td>
<td>203 (14.3)</td>
<td></td>
</tr>
<tr>
<td>ER– PR+</td>
<td>17</td>
<td>4 (0.7)</td>
<td>13 (0.9)</td>
<td></td>
</tr>
<tr>
<td>ER– PR–</td>
<td>288</td>
<td>75 (13.1)</td>
<td>213 (15.1)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>138</td>
<td>45</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>ER status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>1,704</td>
<td>496 (86.0)</td>
<td>1,208 (84.1)</td>
<td>0.28</td>
</tr>
<tr>
<td>Negative</td>
<td>310</td>
<td>81 (14.0)</td>
<td>229 (15.9)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>110</td>
<td>39</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>PR status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>1,408</td>
<td>409 (71.4)</td>
<td>999 (70.6)</td>
<td>0.71</td>
</tr>
<tr>
<td>Negative</td>
<td>581</td>
<td>164 (28.6)</td>
<td>417 (29.4)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>135</td>
<td>43</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>HER2 status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>265</td>
<td>74 (13.8)</td>
<td>191 (14.6)</td>
<td>0.64</td>
</tr>
<tr>
<td>Negative</td>
<td>1,579</td>
<td>463 (86.2)</td>
<td>1,116 (85.4)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>280</td>
<td>79</td>
<td>201</td>
<td></td>
</tr>
</tbody>
</table>

*p value, χ² test.

Table 4. Association of periodontal disease with risk of invasive breast cancer, WHI OS

<table>
<thead>
<tr>
<th>Age adjusted</th>
<th>Model 1a</th>
<th>Model 2a</th>
<th>Model 1b</th>
<th>Model 2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total N</td>
<td>73,737</td>
<td>63,800</td>
<td>61,693</td>
<td></td>
</tr>
<tr>
<td>Cases N</td>
<td>2,124</td>
<td>1,898</td>
<td>1,828</td>
<td></td>
</tr>
<tr>
<td>HR (95% CI)</td>
<td>1.14 (1.04–1.26)</td>
<td>1.14 (1.03–1.26)</td>
<td>1.11 (1.00–1.22)</td>
<td></td>
</tr>
</tbody>
</table>

Model 1: Adjusted for age, education, race/ethnicity, BMI, age at menarche, age at menopause, parity, age at first birth, hormone use, alcohol consumption, physical activity, and NSAIDs.

Model 2: Adjusted for variables in Model 1, additionally adjusted for smoking status and pack-years.

Table 5. Association of periodontal disease with risk of invasive breast cancer, by smoking status, WHI OS

<table>
<thead>
<tr>
<th>Smoking status</th>
<th>Total N</th>
<th>Cases N</th>
<th>Case prevalence periodontal disease, %</th>
<th>HR* (95% CI)</th>
<th>PAF* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never smoker</td>
<td>32,593</td>
<td>907</td>
<td>22.9</td>
<td>1.06 (0.91–1.24)</td>
<td>1.30 (–2.29–4.76)</td>
</tr>
<tr>
<td>Former smoker</td>
<td>28,091</td>
<td>902</td>
<td>34.4</td>
<td>1.16 (1.01–1.33)</td>
<td>4.74 (0.11–9.16)</td>
</tr>
<tr>
<td>Quit ≥ 20 years</td>
<td>20,575</td>
<td>659</td>
<td>30.3</td>
<td>1.08 (0.91–1.27)</td>
<td>2.25 (–2.83–7.08)</td>
</tr>
<tr>
<td>Quit < 20 years</td>
<td>7,387</td>
<td>237</td>
<td>45.6</td>
<td>1.36 (1.05–1.77)</td>
<td>12.06 (1.12–21.79)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>2,467</td>
<td>74</td>
<td>47.3</td>
<td>1.32 (0.83–2.11)</td>
<td>11.47 (–10.31–28.94)</td>
</tr>
</tbody>
</table>

*HR and population attributable fractions (PAF) adjusted for age, education, race/ethnicity, BMI, age at menarche, age at menopause, parity, age at first birth, hormone use, alcohol consumption, physical activity, and NSAIDs.
activities including tooth brushing, flossing and chewing, particularly among those with periodontal disease (27). While these circulating oral bacteria are readily cleared, there is considerable cumulative exposure to tissues (28). It is known that milk ducts are not sterile, that breast ductal tissues are exposed to bacteria and viruses during lactation and that human milk contains a complex and variable array of microbes (29–31). Furthermore, there is evidence from small studies of the presence of bacteria in breast tissues (32–34) including in breast tumors (34). The origins of microbes in breast tissues and tumors are not known but the oral cavity and gut might contribute (30). Some of the bacteria species identified in breast tissues (33) are also found in the mouth although it is not known if there are the same strains. There is some evidence (35–37), although not consistent (38, 39), that there is an increase in breast cancer risk associated with antibiotic use. Particular antibiotics might or might not alter the oral microbiome.

Another potential mechanism is inflammation resulting from the periodontal disease impacting systemic processes including breast carcinogenesis (40). Periodontal disease is associated with chronic systemic inflammation including increased blood C-reactive protein (41, 42), cytokines and chemokines (43), with a potential impact on carcinogenesis (44). Bacterial metabolites produced in the mouth including nitrosamines and acetaldehyde could have a systemic impact on carcinogenesis (45). It could also be that there are common risk factors including smoking, physical activity, or diet as well as etiologic factors such as inflammation, oxidative stress, or shared genetic factors that contribute to host susceptibility to both breast cancer and periodontal disease (27, 46–48). The cytokine receptor activator of NF-κB (RANK) and its ligand (RANKL) may be important in breast carcinogenesis and metastasis (49–52). Blood and salivary RANKL are increased in periodontal disease, especially among smokers (53, 54). We found that breast cancer risk associated with periodontal disease was limited to smokers, particularly former smokers who had quit in the previous 20 years. Smoking is a major risk factor for periodontal disease (21); the bacterial microbiota for periodontal patients differs for smokers and nonsmokers (22, 23). Smokers' microbiomes have less diversity, higher prevalence of organisms associated with periodontal pathogenesis, and lower prevalence of those associated with health (22, 55). There is evidence of lower humoral immune response in both current and former smokers compared with never smokers (56). Our finding of increased breast cancer risk associated with periodontal disease among former smokers who had quit in the past 20 years could be an indication that previous exposure to smoking was significant in the carcinogenic process or that the smoking resulted in a change slow to be reversed. We examined models both with and without adjusting for pack years of smoking. While point estimates were similar, the confidence intervals were wider and included the null for the latter, more adjusted model. Periodontal disease is common, particularly among older adults. In this cohort, 26% of all participants reported having been told by a dental professional that they have periodontal disease and 31% of current and former smokers reported periodontal disease. If there is a relationship between periodontal disease and breast cancer, based on our findings of attributable risk, approximately 11% of cases among current smokers and 12% of cases among former smokers would result from periodontal disease, and thus could potentially be prevented through improved control of periodontal disease in older women.

We found increased risk of invasive breast cancer among postmenopausal women who had been told that they had periodontal disease, particularly former smokers who had quit in the previous 20 years. Replication of these findings in other populations will allow us to better understand this association between periodontal disease and breast cancer, with the potential to provide new insights and new strategies for prevention of breast cancer. These findings have potential important public health relevance as the subgroup of older U.S. women continues to grow, with increased incidence of both periodontal disease and breast cancer. Future research should include a species and even strain specific examination of the oral microbiome, particularly for those with periodontal disease, and former and current smokers in relation to the microbiome in normal breast tissues and in breast tumors. Data regarding changes in breast tissues from animal models with treatment of periodontal disease would also be important to understand the observations reported here.

Disclosure of Potential Conflicts of Interest

R.J. Genco reports receiving a commercial research grant from Sunstar; has received speakers bureau honoraria from Sunstar, Colgate Palmolive, Johnson & Johnson, Wrigley, Cigna Insurance Co., and Proctor and Gamble; and is a consultant/advisory board member for Sunstar. These organizations might have an interest in the submitted work but did not contribute to the work. He is a member of the Scientific Advisory Panel of the American Academy of Periodontology, a nonfinancial interest which may be relevant to the submitted work. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: J.L. Freudenheim, R.J. Genco, J. Wactawski-Wende

Development of methodology: J.L. Freudenheim

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): R.J. Genco, J. Wactawski-Wende

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J.L. Freudenheim, R.J. Genco, M.J. LaMonte, K.M. Hovey, X. Mai, C.A. Andrews, J. Wactawski-Wende

Writing, review, and/or revision of the manuscript: J.L. Freudenheim, R.J. Genco, M.J. LaMonte, A.E. Milten, K.M. Hovey, X. Mai, N. Nwizie, C.A. Andrews, J. Wactawski-Wende

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J.L. Freudenheim, J. Wactawski-Wende

Study supervision: R.J. Genco, J. Wactawski-Wende

Short List of WHI Investigators

Program Office: (National Heart, Lung, and Blood Institute, Bethesda, Maryland) Jacques Rossouw, Shari Ludlam, Dale Burwen, Joan McGowan, Leslie Ford, and Nancy Geller

Clinical Coordinating Center: (Fred Hutchinson Cancer Research Center, Seattle, WA) Garnet Anderson, Ross Prentice, Andrea LaCroix, and Charles Kooperberg

Investigators and Academic Centers: (Brigham and Women’s Hospital, Harvard Medical School, Boston, MA) JoAnn E. Emanon; (MedStar Health Research Institute/Howard University, Washington, DC) Barbara V. Howard; (Stanford Prevention Research Center, Stanford, CA) Marzia L. Stefanick; (The Ohio State University, Columbus, OH) Rebecca Jackson; (University of Arizona, Tucson/Phoenix, AZ) Cynthia A. Thompson; (University at Buffalo, Buffalo, NY) Jean Wactawski-Wende; (University of Florida, Gainesville/Jacksonville, FL) Marian Limacher; (University of Iowa, Iowa City/Davenport, IA) Robert Wallace; (University of Pittsburgh, Pittsburgh, PA) Lewis Kuller; (Wake Forest University School of Medicine, Winston-Salem, NC) Sally Shumaker.
References

Periodontal Disease and Breast Cancer: Prospective Cohort Study of Postmenopausal Women

Jo L. Freudenheim, Robert J. Genco, Michael J. LaMonte, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-15-0750

Cited articles
This article cites 53 articles, 10 of which you can access for free at:
http://cebp.aacrjournals.org/content/25/1/43.full.html#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
/content/25/1/43.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.