Circulating 25-Hydroxyvitamin D3 and Survival after Diagnosis with Kidney Cancer

David C. Muller1, Ghislaine Scelo1, David Zaridze2, Vladimir Janout3, Ivana Holcatova4, Marie Navratilova5, Dana Mates6, Olivind Midttun7, Per Magne Ueland8,9, Paul Brennan1, and Mattias Johansson1

Abstract

Prospective cohort studies have provided some evidence that circulating vitamin D is associated with risk of, and survival from, renal cell carcinoma (RCC), but it is unclear whether concentrations of vitamin D at the time of diagnosis of RCC are associated with prognosis. We conducted a case–cohort study of 630 RCC cases, including 203 deaths, from a multicenter case–control study in Eastern Europe. Vitamin D was assessed as 25-hydroxyvitamin D3 [25(OH)D3], and we used weighted Cox models to estimate hazard ratios (HR) and 95% confidence intervals (CI) by categories of season-adjusted 25(OH)D3. Higher concentrations of 25(OH)D3 were associated with lower risk of death after adjusting for stage, age, sex, and country (HR highest vs. lowest category 0.57; 95% CI, 0.34–0.97). The inverse associations of 25(OH)D3 with death were most notable among those who died from non-RCC causes and those diagnosed with early-stage disease. In summary, 25(OH)D3 concentration at diagnosis of RCC was inversely associated with all-cause mortality rates, but not specifically with RCC outcome. Cancer Epidemiol Biomarkers Prev; 24(8); 1277–81. ©2015 AACC.

Introduction

Each year, more than 300,000 new cases of kidney cancer are diagnosed worldwide, leading to approximately 130,000 deaths (1). The prognosis is strongly dependent on stage at diagnosis, with around 90% of stage I patients alive 5 years after diagnosis, compared with only 10% of stage IV patients (2).

Little is known about factors influencing survival after diagnosis of kidney cancer, apart from tumor stage and grade. We recently investigated circulating vitamin D and kidney cancer onset and survival in a prospective epidemiological cohort where blood samples were collected at entry to the cohort, an average of 7 years before diagnosis (3). In contrast to the Vitamin D Pooling Project, which found no evidence of an association (4), we reported an inverse association between vitamin D concentrations and risk of subsequent kidney cancer. This observation was consistent with another recent study in which investigators had estimated vitamin D levels (5). Further, we observed an increased rate of death after kidney cancer diagnosis for both low and high concentrations of vitamin D. Available data did not allow thorough analysis of cause-specific mortality, nor were we able to adjust for stage. This observation prompted us to investigate whether vitamin D concentrations in blood at kidney cancer diagnosis are associated with subsequent survival, and if such an association is independent of stage or other prognostic factors.

Materials and Methods

The K2 study

Participants included patients who were above 18 years of age and diagnosed with kidney cancer in one of four participating centers in Czech Republic, 1 center in Romania, and 1 center in Russia. We gave participants a standardized face-to-face short lifestyle questionnaire covering sociodemographic characteristics, anthropometric measures, medical history, family history, and tobacco and alcohol use. Clinical and pathologic data were abstracted from medical charts and pathologic reports. A majority of participants underwent nephrectomy, and the tumor was histologically confirmed. Follow-up for outcome (relapse, vital status, and cause of death where relevant) was performed every 6 to 12 months after diagnosis, using passive follow-up methods where possible (with confirmation of vital status through active follow-up methods in case of uncertainties), and active follow-up methods when no linkage to databases was possible. The study protocol was approved by the institutional review boards of the International Agency for Research on Cancer (IARC) and all collaborating institutions, and we obtained written informed consent from all participants.

Case–cohort sampling

Among 2,330 participants with questionnaire data available and a diagnosis of renal cell carcinoma (RCC), 1,005 participants...
Biosample processing and biochemical analysis

Venous blood was obtained before or at the time of the nephrectomy, prior to any treatment. Blood was collected in vacutainers containing ethylenediaminetetraacetic acid (EDTA) and processed as rapidly as possible (usually within 2 hours). Plasma samples were stored at −80°C, except in Ceske Budejovice, Czech Republic, where samples were stored at −20°C. All samples were transported at −80°C to IARC for long-term storage at −150°C. Samples underwent a single thawing cycle for aliquoting of 400 μL for shipment to the Bevital Laboratory in Bergen, Norway (www.bevalit.no), for analysis. Liquid chromatography coupled to tandem mass spectrometry was used to analyze vitamin D as 25(OH)D$_3$ and 25(OH)D$_2$. 25(OH)D$_2$ was undetectable in the majority of samples, so our analyses focus on 25(OH)D$_3$. The laboratory is Vitamin D External Quality Assessment Scheme certified (DEQAS; www.deqas.org).

Statistical analysis

To adjust for seasonal variation, we modeled the expected log$_2$ 25(OH)D$_3$ concentration as a periodic function of day of blood draw using a pair of sine and cosine functions. To create season-adjusted categories, we grouped the residuals from this model at its 10th, 33rd, 67th, and 90th percentiles, explicitly adjusting for the season-adjusted categories of 25(OH)D$_3$. We also modeled 25(OH)D$_3$ continuously using restricted cubic splines with knots at the 10th, 33rd, 67th, and 90th percentiles, explicitly adjusting for seasonal variation by including the pair of sine and cosine functions.

HRs for cause-specific mortality were calculated in a competing risks model using the data augmentation method (7). To account for the case–cohort design (8), we used the Barlow method to estimate the survival distribution in the case-cohort design (9, 10), slightly adjusted to account for the fact that we included all cases with stage IV disease (i.e., all stage IV cases received a weight of 1). We investigated potential effect modification by fitting interactions between season-adjusted log$_2$ 25(OH)D$_3$ and various factors. All models included stage, age at recruitment, and sex as covariates, with the baseline hazard stratified by country of recruitment. We additionally adjusted for body mass index (BMI, kg/m2), smoking status (never, former, and current), and alcohol drinking status (never, former, and current). All P values are two-sided, and were calculated using the Wald test. Statistical analyses were performed using Stata 12.1 for Linux (Stata Corporation) and R version 3.1.1 (11).

Results

Demographic and clinical characteristics of the study sample by vital status at the end of follow-up are presented in Table 1. The
Table 2. HRs (95% CIs) for risk of all-cause and cause-specific mortality by season-adjusted categories of 25(OH)D3 concentration.

<table>
<thead>
<tr>
<th>D2 category</th>
<th>N (n=4 vs. 1)</th>
<th>Minimally adjusted*</th>
<th>Adj usted**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D2 category</td>
<td>RR (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>All-cause</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>63</td>
<td>1.00</td>
<td>0.015c</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>1.34 (0.69–1.90)</td>
<td>1.12 (0.67–1.87)</td>
</tr>
<tr>
<td>3</td>
<td>46</td>
<td>0.57 (0.34–0.97)</td>
<td>0.59 (0.35–1.00)</td>
</tr>
<tr>
<td>4</td>
<td>38</td>
<td>1.32 (0.76–2.31)</td>
<td>1.30 (0.74–2.27)</td>
</tr>
<tr>
<td>RCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>1.00</td>
<td>0.56d</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>1.32 (0.76–2.31)</td>
<td>1.30 (0.74–2.27)</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>0.68 (0.38–1.20)</td>
<td>0.70 (0.39–1.24)</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>0.36 (0.14–0.92)</td>
<td>0.36 (0.14–0.91)</td>
</tr>
<tr>
<td>Non-RCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>0.79 (0.36–1.75)</td>
<td>0.76 (0.34–1.70)</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>0.52 (0.21–1.28)</td>
<td>0.55 (0.23–1.35)</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>0.36 (0.14–0.92)</td>
<td>0.36 (0.14–0.91)</td>
</tr>
</tbody>
</table>

*Stratified by country, and adjusted for stage, age at recruitment, and sex.
**Adjusted for BMI (kg/m2), smoking status, cigarettes per day, alcohol drinking status, and alcohol intake per day (mL).

P values for the competing risks model are from tests against the null hypothesis that the 25(OH)D3 coefficients are identical to 0.

P values for the competing risks model are from tests against the null hypothesis of no heterogeneity of the coefficients by cause of death (RCC vs. non-RCC).

Discussion

We investigated whether differences in circulating concentrations of 25(OH)D3 at the time of diagnosis of RCC were associated with all-cause and RCC-specific survival. We observed that higher concentrations of 25(OH)D3 were associated with a lower rate of death, but that this association was not restricted to RCC-specific death. We also observed an indication that this association might be somewhat stronger for those with a history of hypertension, advanced age at diagnosis, or early-stage disease.

We recently studied circulating 25(OH)D3 and risk of RCC in a prospective case–control study nested within the EPIC cohort (3). This analysis indicated an inverse association between 25(OH)D3 and risk of RCC as well as a nonlinear U-shaped association between prediagnostic 25(OH)D3 and all-cause mortality after diagnosis of RCC. This observation prompted us to conduct the current analysis in newly diagnosed RCC cases with complete information on disease stage and cause of death. Results from the present study are not completely consistent with these initial findings from EPIC. In particular, we found no evidence of increased rate of death among patients with high 25(OH)D3 at diagnosis, but rather an inverse association between 25(OH)D3 and all-cause mortality across the range of observed concentrations.

Many studies have investigated circulating vitamin D and all-cause mortality in general populations. Consistent with our observation, many of these have reported high risk of death for stage I or II RCC, but there was little statistical evidence of interaction with any of these factors.
people with low concentrations (12–19), suggesting that the association observed in our study might reflect a general phenomenon rather than something specific to RCC prognosis. This would be consistent with our observation that any association might be stronger among those patients diagnosed with early-stage rather than advanced-stage tumors. The lack of heterogeneity by cause of death provides additional indirect evidence that the association between vitamin D and mortality is unlikely to exist exclusively among RCC patients.

Circulating vitamin D (measured as 25(OH)D₃ in the current study) was converted to its active hydroxylated form calcitriol (1,25(OH)₂D₃) in the kidneys. Calcitriol is a potent steroid hormone that has been implicated by in vitro and in vivo models as having anticancer influence in a wide range of cancers by affecting multiple cancer hallmarks, including reducing angiogenesis, metastasis, cell invasion, inflammation, and proliferation, as well as stimulating apoptosis (20), and through these mechanisms, higher concentrations of circulating vitamin D may inhibit tumor progression, leading to improved survival. In addition, it is possible that kidney function is affected by the presence of the tumor, which may lead to disregulation of the conversion of circulating vitamin D to calcitriol. The effects of such disregulation on any causal association between vitamin D and RCC prognosis are difficult to predict. Given that we observe no evidence of heterogeneity by cause of death, we tentatively infer that circulating vitamin D is not causally associated with RCC tumor progression and prognosis, but is rather an indicator of general health status.

One limitation of our study is that we were unable to adjust for grade, which was unavailable for a substantial proportion (28%) of participants. Nevertheless, given that our results do not differ by cause of death, we consider it unlikely that tumor grade is an important confounder or effect modifier. Another limitation of our study is that we did not have information regarding the use of vitamin D supplements, although it is unlikely that supplement use was highly prevalent given that 25(OH)D₃ concentrations were undetectable for the majority of participants. It is also possible that these results may not generalize beyond Central and Eastern European populations, but the remarkable consistency with results observed in nonclinical cohort studies suggests that our results will generalize well, at least to a broader population of European origin.

In summary, we found that high 25(OH)D₃ at diagnosis of RCC was associated with lower risk of death. This association was not restricted to RCC cause-specific death and appeared stronger for early-stage disease, supporting the notion of 25(OH)D₃ being associated with lower overall death rates in general, rather than RCC prognosis specifically.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Disclaimer

The funding organization had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript.

Authors' Contributions

Conception and design: D.C. Muller, G. Scelo, D. Zaridze, P. Brennan, M. Johansson
Development of methodology: D.C. Muller, G. Scelo, P.M. Ueland
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): G. Scelo, D. Zaridze, V. Janout, I. Holcatalova, M. Navratilova, D. Mates, O. Midttun
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): D.C. Muller, G. Scelo, O. Midttun, P. Brennan, M. Johansson
Writing, review, and/or revision of the manuscript: D.C. Muller, G. Scelo, O. Midttun, P.M. Ueland, P. Brennan, M. Johansson
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): G. Scelo, V. Janout, M. Johansson
Study supervision: G. Scelo, P. Brennan, M. Johansson

Grant Support

The World Cancer Research Fund (UK) supported the biochemical analyses via a grant to M. Johansson. This work was also supported by a grant from the NCI (1I01-CA155309) to G. Scelo. The work undertaken by D.C. Muller that was reported in this paper was done so during the tenure of an IARC–Australia Postdoctoral Fellowship from the IARC, supported by the Cancer Council Australia.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 9, 2014; revised April 22, 2015; accepted May 18, 2015; published OnlineFirst May 28, 2015.
Circulating 25-Hydroxyvitamin D₃ and Survival after Diagnosis with Kidney Cancer

David C. Muller, Ghislaine Scelo, David Zaridze, et al.

Cancer Epidemiol Biomarkers Prev 2015;24:1277-1281. Published OnlineFirst May 28, 2015.

Updated version
Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-14-1351

Supplementary Material
Access the most recent supplemental material at:
http://cebp.aacrjournals.org/content/suppl/2015/05/30/1055-9965.EPI-14-1351.DC1

Cited articles
This article cites 18 articles, 6 of which you can access for free at:
http://cebp.aacrjournals.org/content/24/8/1277.full.html#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
/content/24/8/1277.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.