Mendelian Randomization Study of Body Mass Index and Colorectal Cancer Risk

Aaron P. Thrift1,2, Jian Gong1, Ulrike Peters1,3, Jenny Chang-Claude4, Anja Rudolph5, Martha L. Slattery6, Andrew T. Chan7,6, Adam E. Locke8, Bratashi Kahali9, Anne E. Justice10, Tune H. Pers11,12,13,14, Steven Gallinger15, Richard B. Hayes16, John A. Baron17, Bette J. Caan18, Shuji Ogino19,20,21, Sonja I. Berndt22, Stephen J. Chanock22, Graham Casey23, Robert W. Haile24, Mengmeng Du13,17, Tabitha A. Harrison1, Mark Thornquist1, David J. Duggan25, Loïc Le Marchand26, Noralane M. Lindor7, Daniela Seminara28, Mingyang Song29,30, Kana Wu9,22, Stephen N. Thibodeau20, Michelle Cotterchio21, Aung Ko Win32, Mark A. Jenkins32, John L. Hopper32, Cornelia M. Ulrich25, John D. Potter13,34, Polly A. Newcomb1,3, Michael Hoffmeister35, Hermann Brenner35,36, Emily White30, Li Hsu1,37, and Peter T. Campbell38

Abstract

Background: High body mass index (BMI) is consistently linked to increased risk of colorectal cancer for men, whereas the association is less clear for women. As risk estimates from observational studies may be biased and/or confounded, we conducted a Mendelian randomization study to estimate the causal association between BMI and colorectal cancer.

Methods: We used data from 10,226 colorectal cancer cases and 10,286 controls of European ancestry. The Mendelian randomization analysis used a weighted genetic risk score, derived from 77 genome-wide association study–identified variants associated with higher BMI, as an instrumental variable (IV). We compared the IV odds ratio (IV-OR) with the OR obtained using a conventional covariate-adjusted analysis.

Results: Individuals carrying greater numbers of BMI-increasing alleles had higher colorectal cancer risk [per weighted allele OR, 1.31; 95% confidence interval (CI), 1.10–1.57]. Our IV estimation results support the hypothesis that genetically influenced BMI is directly associated with risk for colorectal cancer (IV-OR per 5 kg/m2, 1.50; 95% CI, 1.13–2.01). In the sex-specific IV analyses higher BMI was associated with higher risk of colorectal cancer among women (IV-OR per 5 kg/m2, 1.82; 95% CI, 1.26–2.61). For men, genetically influenced BMI was not associated with colorectal cancer (IV-OR per 5 kg/m2, 1.18; 95% CI, 0.73–1.92).

Conclusions: High BMI was associated with increased colorectal cancer risk for women. Whether abdominal obesity, rather than overall obesity, is a more important risk factor for men requires further investigation.

Impact: Overall, conventional epidemiologic and Mendelian randomization studies suggest a strong association between obesity and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev; 24(7); 1024–31. © 2015 AACR.

Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada. 4Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, New York. 5Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina. 6Division of Research, Kaiser Permanente Northern California, Oakland, California. 7Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts. 8Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. 9Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. 22Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland. 23USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California. 25Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii. 27Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona. 28Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Bethesda, Maryland. 29Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts. 32Departments of Laboratory Medicine and Pathology and Laboratory Genetics, Mayo Clinic, Rochester, Minnesota. 33Prevention and Control, Cancer Care Ontario, Toronto, Canada. 34Melbourne School of Population and
Introduction

Observational studies consistently show that high body mass index (BMI) is associated with an increased risk of colorectal cancer for men, whereas the magnitude of the association is less clear for women (1). Although these findings came from well designed and conducted epidemiologic studies, associations from observational studies could arise from bias and residual confounding and, therefore, may not necessarily reflect a causal relationship. First, the correlation between BMI and multiple other lifestyle and clinical factors suggests that adequate control for all potential confounding may be difficult. Conversely, over-adjustment in multivariable models can attenuate risk estimates toward the null and may explain the smaller associations reported for women (e.g., adjusting for menopausal hormone therapy; 2). Second, conventional epidemiologic analyses are often based on self-reports of participants’ weights and heights at one point in time and thus may be subject to misclassification from inaccurate reporting and insufficient follow-up to capture changes in measurements over time (e.g., men overreport height more so than women, and heavier women tend to underreport weight more so than heavier men (3, 4)). Finally, early stages of cancer may result in weight loss, and so measures of body weight reported within a few years of colorectal cancer diagnosis may introduce bias, a particular problem in case–control studies. As the latent period between high BMI and colorectal cancer risk is unknown, a measure that reflects typical lifetime BMI may counteract some of these limitations. Determining whether or not the association is causal is important as BMI could be a key target for primary prevention of colorectal cancer.

The use of genetic variants under the Mendelian randomization framework is one approach to exploring the possible causal nature of the observed associations between BMI and risk of colorectal cancer (5). Mendelian randomization uses instrumental variables (e.g., genetic variants that proxy for directly measured environmental risk factors) to make causal inferences about the relationship between a risk factor and an outcome and this approach can overcome issues of confounding, recall bias and reverse causality inherent in observational studies (5–7). First, because alleles are randomly allocated from parents to offspring during gamete formation, the association between the instrumental variable and the outcome is not confounded by environmental exposures. Second, genetic variants are measured reliably and are not affected by disease status. Furthermore, as those with the risk alleles have been essentially allocated randomly to higher levels of exposure across the life course, genetic variation may more accurately reflect lifetime exposure compared with a single measurement. A potential limitation of Mendelian randomization arises, however, for highly complex traits whereby genetics may explain only a small fraction of the phenotypic variability. Many early Mendelian randomization studies used a single variant as an instrumental variable and, in the case described above, were unable to test the full spectrum of genetically influenced phenotype. By using multiple genetic variants as instrumental variables, we can increase statistical power and improve the precision of the instrumental variable estimate (8).

We therefore conducted a Mendelian randomization study using a weighted genetic risk score, derived from 77 genetic variants associated with higher BMI, as an instrumental variable to reassess the observational estimates of the associations between BMI and colorectal cancer risk.

Materials and Methods

Our analyses included individual participant data and genetic material from 10,226 colorectal cancer cases and 10,286 population-based controls of European ancestry in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon-Cancer Family Registry (C-CFR). The 11 studies (6 cohort and 5 case–control) used in our analyses (Supplementary Table S1) have been described in detail previously (9) and include the Health Professionals Follow-up Study (HPFS; ref. 10); Nurses’ Health Study (NHS; ref. 11); Physician’s Health Study (PHS; ref. 12); Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO; ref. 13); VITamins And Lifestyle (VITAL; ref. 14) Study; Women’s Health Initiative (WHI; ref. 15); the Colon-Cancer Family Registry (C-CFR; ref. 16); Ontario Familial Colon Cancer Registries (OFCCR; ref. 17); Diet, Activity and Lifestyle Survey (DALS; ref. 18, 19); Postmenopausal Hormone Study (PMH-CCFR; ref. 20); and Darmkrebs: Chancen der Verhütung durch Screening (DACHS; ref. 21). To avoid confounding by population stratification, we used principal components analysis (HapMap II populations as reference) to restrict our analyses to individuals of European ancestry (22). Cases were men and women with primary invasive colorectal adenocarcinoma [International Classification of Diseases, 9th revision (ICD-9) codes 153.0–153.4, 153.6–153.9, and 154.0–154.1] and histologic confirmation (by medical records, pathologic reports, or death certificates) of colorectal cancer was performed for all studies. All participants provided written, informed consent and each study was approved by the relevant Institutional Review Boards.

Data on demographic and lifestyle factors were collected using in-person interviews or self-completed questionnaires, and data were centrally harmonized as previously described (23). BMI was calculated as weight in kilograms divided by height in meters squared (kg/m²). Although the studies obtained participants’ weight (either self-report or measured) at different time points with respect to colorectal cancer diagnosis (Supplementary Table S1), we used weight that most accurately reflected usual adult weight before any disease-related weight loss. For the Mendelian randomization analysis, we used a weighted genetic risk score as an instrumental variable (IV) for BMI. A recent genome-wide association study (GWAS) conducted by the Genetic Investigation

Global Health, The University of Melbourne, Melbourne, Victoria, Australia. 7Population Sciences Huntsman Cancer Institute, Salt Lake City, Utah. 8Centre for Public Health Research, Massey University, Wellington, New Zealand. 9Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. 10German Cancer Consortium (DKTK), Heidelberg, Germany. 11German Cancer Research Center (DKFZ), Heidelberg, Germany. 12Epidemiology Research Program, American Cancer Society, Atlanta, Georgia.

Note: Supplementary data for this article are available at Cancer Epidemiology, Biomarkers & Prevention Online (http://cebp.aacrjournals.org/).

Corresponding Author: Aaron P. Thrift, Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030-3498. Phone: 713-798-9007; Fax: 713-798-3658; E-mail: aaron.thrift@bcm.edu

doi: 10.1158/1055-9965.EPI-14-1309

©2015 American Association for Cancer Research.
of Anthropometric Traits (GIANT) consortium involving over 300,000 individuals of European-descent identified 77 single-nucleotide polymorphisms (SNPs) associated with BMI at genome-wide significance (e.g., \(P < 5 \times 10^{-8} \)). Genotype information on these 77 SNPs was used to construct the weighted genetic risk score. The GIANT GWAS for BMI found no evidence of nonadditive effects among SNPs, thus we fit additive SNP effects.

For each SNP, participants received a score of 0, 1, or 2 for carrying zero (wild-type homozygous), one (heterozygous) or two (homozygous for the risk allele) alleles associated with higher BMI. For imputed SNPs, participants received scores that ranged from 0 to 2. SNPs were externally weighted in the score by the per-allele change in BMI (the increase in BMI per 1 additional risk allele) reported for that SNP in the GIANT GWAS for BMI (24). Details on genotyping and quality assurance/quality control have been previously published (9). Call rates were \(\geq 98\% \) and all selected SNPs were in Hardy–Weinberg Equilibrium among controls (\(P \geq 1 \times 10^{-4} \)).

Statistical analysis

Associations between potential confounders and colorectal cancer risk were assessed using \(\chi^2 \) tests and Student \(t \) tests. Associations among potential confounders, the IV, and BMI were assessed in controls using linear regression, Student \(t \) tests and analysis of variance.

All participants were analyzed using a single-model (pooled) approach with adjustment for study. For the IV analysis, we used the two-stage control function IV approach, with the genetic risk score as an IV for BMI, and assumed an additive model (25). First, we fit a linear regression model within controls to predict BMI from the IV, adjusted for study and the top three principal components of genetic ancestry. Next, we fit a logistic regression model with BMI as a predictor and colorectal cancer case–control status as the outcome using robust standard errors and adjusted for the residuals from the first step (25). The coefficient for BMI from the second-stage model is the causal estimate for BMI. In Mendelian randomization studies, the IV for the exposure of interest is considered sufficiently strong if the first-stage F-statistic exceeds 10 (26). For the conventional covariate-adjusted analysis, BMI was the variable of interest and odds ratios (OR) and 95% confidence intervals (95% CI) were estimated using unconditional logistic regression models. We conducted minimally adjusted analyses (models were adjusted for age, sex, and study) and fully adjusted analyses (models were additionally adjusted for smoking status, family history of cancer, consumption of fruit, vegetables, processed meat, and red meat, and use of aspirin/NSAIDs) in the analyses (Sweden: 271,700; Norway: 188,000; USA: 108,000). BMI was statistically significantly associated with age, sex, family history of cancer, consumption of fruit, vegetables, processed meat, and red meat and, for women only, use of hormone therapy (Supplementary Table S2).

The allele frequencies for each of the 77 SNPs were consistent across the 11 studies (data not shown). The IV was normally distributed (mean, 1.97; median, 1.97; SD, 0.2; minimum, 1.37; maximum, 2.66) and the association between the IV and BMI was homogeneous across studies (test for heterogeneity, \(\rho^2 = 0\% \); \(P = 0.45 \); Fig. 1). From the pooled analysis, a one-unit increase in the IV was associated with a 2.33 kg/m\(^2\) (95% CI, 2.66–3.79) increase in BMI. The IV explained only 1.2% of the variance in BMI, but was a sufficiently strong instrument for BMI (F-statistic, 126). There were no associations of the IV with age, sex, smoking status, family history of cancer, consumption of fruit, vegetables, processed meat, and red meat or use of hormone therapy (Supplementary Table S2). However, the IV was associated with history of diabetes, and we found a modest positive association between the IV and use of aspirin/NSAIDs (Supplementary Table S2).

Individuals with greater numbers of (weighted) BMI-increasing alleles (i.e., those with a higher weighted genetic risk score) were at increased risk for colorectal cancer (per weighted allele OR, 1.31; 95% CI, 1.10–1.57; Supplementary Table S3). The IV analysis showed evidence that higher BMI was causally associated with increased risk of colorectal cancer (IV-OR per 5 kg/m\(^2\), 1.50; 95% CI, 1.13–2.01). The IV point estimate was greater in magnitude than the point estimate from conventional covariate-adjusted analysis (minimally adjusted OR per 5 kg/m\(^2\), 1.18; 95% CI, 1.15–1.22); however, the 95% CIs overlapped and they were not statistically significantly different from one another (\(P \)-difference = 0.10). The findings were similar when we examined the BMI–colorectal cancer association by cancer subsite in the colorectum (Table 2). Additional adjustment for confounding did not change the estimates in the conventional analysis (Table 2) and, likewise, adjustment of the IV analysis for age, sex, history of diabetes, and use of aspirin/NSAIDs did not change the IV risk estimate for BMI (IV-OR per 5 kg/m\(^2\), 1.51; 95% CI, 1.13–2.02).
Using conventional methods, we found a statistically significant interaction between BMI and sex (colon cancer, $P_{\text{Interaction}} < 0.001$; rectal, $P_{\text{Interaction}} = 0.02$). The IV was a sufficiently strong instrument for BMI in stratified analyses for men (F-statistic, 74.2; R^2, 1.6%) and women (F-statistic, 60.5; R^2, 1.0%). For men, there was no evidence that carriers of greater numbers of (weighted) BMI-increasing alleles were at increased risk for colorectal cancer and the risk estimate for colorectal cancer obtained from the IV analysis (IV-OR per 5 kg/m2, 1.18; 95% CI, 1.01–1.38) was not statistically significantly different ($P_{\text{difference}} = 0.70$). In contrast, for women, carriers of greater numbers of (weighted) BMI-increasing alleles were at increased risk for colorectal cancer and the IV estimate for colorectal cancer risk (IV-OR per 5 kg/m2, 1.82; 95% CI, 1.26–2.61) was statistically significantly different from the estimate obtained from conventional covariate-adjusted analysis (minimally adjusted OR per 5 kg/m2, 1.14; 95% CI, 1.10–1.20; $P_{\text{difference}} = 0.01$).

For men, the OR for BMI associated with colorectal cancer was greater in magnitude when the conventional covariate-adjusted analysis was restricted to those studies with measured height and
Thrift et al.

weight (minimally adjusted OR per 5 kg/m², 1.53; 95% CI, 1.33–1.76); there was no difference to the overall analysis for women (minimally adjusted OR per 5 kg/m², 1.13; 95% CI, 1.06–1.19).

In supplementary analyses, individuals with greater numbers of (weighted) WHR-increasing alleles were at increased risk for colorectal cancer (per weighted allele OR, 1.36; 95% CI, 1.08–1.73). In contrast with that seen for BMI, men with greater numbers of (weighted) WHR-increasing alleles were at increased risk for colorectal cancer, whereas there was no evidence that women carriers of greater numbers of (weighted) WHR-increasing alleles were at increased risk for colorectal cancer (Supplementary Table S3).

Discussion

Observational studies have consistently reported that high BMI is associated with increased risk of colorectal cancer; however, the magnitude of the BMI–colorectal cancer association may differ between men and women (1). The limitations of observational studies, such as residual confounding (e.g., by SES, smoking, alcohol, and other lifestyle and behavioral factors), reverse causation, and reporting bias, may contribute to the heterogeneity reported in previous studies. Using Mendelian randomization methods, we reexamined the association between BMI and colorectal cancer risk without the inherent limitations in observational studies and compared the IV and conventional estimates. Overall, we found that BMI was associated with colorectal cancer risk; however, the sex-specific associations in our study are in conflict with expectations based on the existing literature of the BMI–colorectal cancer association. For women, genetically influenced BMI was statistically significantly associated with risk of colorectal cancer and our findings suggest that BMI may confer greater risk of colorectal cancer than previously reported (1). On the other hand, for men, while the IV and conventional estimates of colorectal cancer risk associated with high BMI were not statistically significantly different, the IV for BMI was not associated with colorectal cancer risk for men.

Results from large meta-analyses indicate that the risk of colorectal cancer for men increases by 20% to 30% per 5 kg/m² increase in BMI. For women, the magnitude of the association was lower in all studies (−10% increased risk per 5 kg/m²) and did not always reach statistical significance (1). Consistent with these results, in our conventional covariate-adjusted analysis, the magnitude of the BMI–colorectal cancer association was substantially higher for men (32% increased risk per 5 kg/m²) than for women (15% increased per 5 kg/m²).

Using the Mendelian randomization approach, for women, we found evidence that genetically raised BMI was associated with increased risk of colorectal cancer. Importantly, the instrumental variable estimation for the BMI–colorectal cancer association for women was higher in magnitude than the risk estimate for BMI obtained from the conventional covariate-adjusted analysis. This suggests that the conventional risk estimate for women in our study, as well as those previously reported, may underestimate the true causal association between BMI and colorectal cancer risk for women.

Table 2. Estimates of the effect of BMI on risk of colorectal cancer, colon cancer, and rectal cancer obtained using conventional covariate-adjusted and IV analysis (OR per 5 kg/m²)

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Controls/cases</th>
<th>Minimally adjusted OR (95% CI)</th>
<th>Fully adjusted OR (95% CI)</th>
<th>IV-OR (95% CI)</th>
<th>P<sup>↓</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>10,286/10,226</td>
<td>1.18 (1.15–1.22)</td>
<td>1.17 (1.14–1.21)</td>
<td>1.50 (1.15–2.01)</td>
<td>0.10</td>
</tr>
<tr>
<td>Colon cancer</td>
<td>10,286/6,864</td>
<td>1.19 (1.15–1.23)</td>
<td>1.14 (1.14–1.22)</td>
<td>1.50 (1.08–2.07)</td>
<td>0.17</td>
</tr>
<tr>
<td>Rectal cancer</td>
<td>10,286/2,365</td>
<td>1.15 (1.09–1.21)</td>
<td>1.14 (1.08–1.20)</td>
<td>1.26 (1.07–2.04)</td>
<td>0.73</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC</td>
<td>4,539/4,582</td>
<td>1.30 (1.25–1.36)</td>
<td>1.29 (1.22–1.37)</td>
<td>1.18 (0.75–1.92)</td>
<td>0.70</td>
</tr>
<tr>
<td>Colon cancer</td>
<td>4,539/2,942</td>
<td>1.31 (1.23–1.39)</td>
<td>1.29 (1.21–1.37)</td>
<td>1.03 (0.60–1.78)</td>
<td>0.39</td>
</tr>
<tr>
<td>Rectal cancer</td>
<td>4,539/1,253</td>
<td>1.25 (1.14–1.36)</td>
<td>1.25 (1.13–1.37)</td>
<td>1.33 (0.62–2.65)</td>
<td>0.87</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRC</td>
<td>5,747/5,644</td>
<td>1.14 (1.10–1.18)</td>
<td>1.12 (1.08–1.17)</td>
<td>1.82 (1.26–2.61)</td>
<td>0.01</td>
</tr>
<tr>
<td>Colon cancer</td>
<td>5,747/3,922</td>
<td>1.15 (1.10–1.20)</td>
<td>1.13 (1.08–1.18)</td>
<td>1.94 (1.30–2.91)</td>
<td>0.01</td>
</tr>
<tr>
<td>Rectal cancer</td>
<td>5,747/1,112</td>
<td>1.11 (1.04–1.18)</td>
<td>1.08 (1.01–1.16)</td>
<td>1.24 (0.64–2.37)</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Abbreviation: CRC, colorectal cancer.

[*]Adjusted for age, sex, and study.

^{**}Adjusted for age, sex, study, smoking status, family history of cancer, aspirin/NSAID use, diabetes, fruit, vegetable, processed meat, red meat, and (women only) menopause hormone therapy.

^{***}Using weighted genetic risk score derived from 77 SNPs as an instrumental variable for BMI (Mendelian randomization), adjusted for study and the top three principal components of ancestry.

^{****}For comparison of IV–OR with minimally adjusted OR (P < 0.05 rejects the null hypothesis that they are equal).
women. It is possible that previous estimates may have been biased toward the null if heavier women were more likely to underreport their weight than women with normal weight (3). This appears unlikely in our study as the results for women were similar between self-reported and measured BMI. There may also be sex-specific behavioral factors associated with BMI and colorectal cancer that may not be adequately measured and/or controlled for in a conventional epidemiologic analysis. This may explain why the risk estimates for BMI were different between self-reported and measured BMI for men, but not for women. It is also possible that the stronger effect in the IV analysis for women may be due to the IV for BMI reflecting genetic factors that express themselves early in life (e.g., BMI in childhood) and influence colorectal cancer risk more so than adult weight gain. An early effect of BMI on colorectal cancer risk for women may be plausible based on possible interactions between the different hormonal milieu associated with pre- and postmenopause. Mendelian randomization methods may better capture an early BMI effect on colorectal cancer risk for women than conventional epidemiologic methods. However, while our findings suggest that higher genetically influenced BMI is directly associated with increased colorectal cancer risk for women, the instrumental variable estimate is a valid test of the direction of the effect, and given the low variance explained, the exact magnitude of the effect could be in the range between the conventional estimates and our IV estimate.

For men, the conventional and IV estimates were not statistically significantly different from one another. However, the instrumental variable estimation gave evidence that genetically influenced BMI was directly associated with increased colorectal cancer risk for men. The majority of studies included in our analyses used self-reported weight and height and we showed that this may bias conventional covariate-adjusted analyses. The IV was associated with diabetes and use of aspirin/NSAIDs. The correlation with diabetes was expected because high BMI is such a strong risk factor for diabetes, and indeed, this is probably further evidence that the IV is an indicator of obesity-associated altered metabolism. The association with aspirin/NSAID-use was not expected a priori but might relate to prophylactic or treatment related use of aspirin regimens among heavier weight persons, or it might be due to chance. Nonetheless, inclusion of diabetes and aspirin/NSAID use in the IV analyses did not change the IV risk estimates for BMI. The majority of studies included in our analyses used self-reported weight and height and we showed that this may bias conventional estimates. Imprecision on genotypes from imputed SNPs is a limitation and may have resulted in loss of power in the instrumental variable analyses. A final limitation in this study is the lack of data on tumor molecular phenotype (29–31) and further research is warranted to answer this question.

Unlike estimates obtained from conventional covariate-adjusted analysis of observational data, the estimates from our IV analysis are not limited by confounding and/or bias. Therefore, they may be interpretable as a measure of the causal effect of BMI on colorectal cancer risk. Several mechanisms have been proposed to explain the association between high BMI and colorectal cancer risk, including insulin and the insulin-like growth factor system, adipokines (e.g., leptin, adiponectin), inflammation (e.g., C-reactive protein), oxidative stress, altered immunity, and steroid hormones, as discussed in recent comprehensive reviews (1, 32, 33).

Overweight and obesity are good targets for primary prevention of colorectal cancer, and men and women should be encouraged to maintain a normal BMI (18.5–25 kg/m²). Given the contrasting findings in this study for men and women, future studies are still needed to better understand the role of obesity (overall versus abdominal) in colorectal cancer carcinogenesis.

Disclosure of Potential Conflicts of Interest

D. Seminara is a consultant/advisory board member for Stanford University. No potential conflicts of interest were disclosed by the other authors.

Disclaimer

The funders of the study had no role in the design, analysis, or interpretation of the data, or in writing or publication decisions related to this article.

Authors’ Contributions

Conception and design: A.P. Thrift, J. Gong, U. Peters, D. Seminara, K. Wu, J.L. Hopper, C.M. Ulrich, H. Brenner, P.T. Campbell

Development of methodology: A.P. Thrift, J. Gong, M. Thornquist, J.L. Hopper, P.T. Campbell

Supplementary Methods: J.L. Hopper, J. Gong, A.P. Thrift, D. Seminara, K. Wu, U. Peters, H. Brenner, C.M. Ulrich, M. Thornquist, P.T. Campbell

www.aacrjournals.org Cancer Epidemiol Biomarkers Prev; 24(7) July 2015 1029

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A. Rudolph, T.H. Pers, S. Gallinger, T.A. Harrison, J.L. Hopper, M. Hoffmeister, H. Brenner

Study supervision: U. Peters, B.J. Caan, J.L. Hopper, H. Brenner

Grant Support
N.M. Lindor was supported through the Mayo Clinic Cooperative Family Registry for Colon Cancer Studies (U01/UI24 CA074800). L. Le Marchand was supported through the University of Hawaii Colorectal Cancer Family Registry (U01/UI24 CA074806). J.A. Baron was supported through the Familial Colorectal Neoplasia Collaborative Group (U01 CA074799). This work was supported by grants from the NIH (R01 CA151993 to S. Ogino; R01 CA137178 to A. T. Chan; P01 CA53996 and P01 AG14358 to L. Hsu). M. Song was supported by a grant from the NIH (U151CA155626-01). M. Du was supported by a grant from the NIH (R25 CA094880). A.E. Locke was supported by a grant from the NIH (R01 DK062370).

GECCO is supported by National Cancer Institute, NIH, U.S. Department of Health and Human Services (U01 CA157088; R01 CA167551) and through cooperative agreements with members of the Colon Cancer Family Registry and PI. This genome-wide scan was supported by the National Cancer Institute, NIH by U101 CA122839 and R01 CA143237 to Graham Casey. The content of this article does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Colon Cancer Family Registry (CCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government or the CCFR. The following CCFR centers contributed data to this article and were supported by NIH: Australasian Colorectal Cancer Family Registry (U01 CA074778 and U101/UI24 CA097735), Ontario Registry for Studies of Familial Colorectal Cancer (U01/UI24 CA074783), Seattle Colorectal Cancer Family Registry (U01/UI24 CA074794).

DACHS is supported by German Research Council (Deutsches Forschungsgemeinschaft, BR 1704/6-1, BR 1704/6-3, BR 1704/6-4 and CH 117/1-1), and the German Federal Ministry of Education and Research (01K10804 and 01ER0814).

DALS is supported by NIH (R01 CA48998 to M.L. Slattery).

HPFS is supported by the NIH (P01 CA 055075, UM1 UI24 CA167552, R01 CA137178, R01 CA 151993, and P50 CA 127003), NCI, NIH, and the NHG (R01 CA137178, P01 CA 087369, R01 CA151993, and P50 CA 127003), and NIH by the NIH (R01 CA42182).

OFCCR is supported by NIH, through funding allocated to the Ontario Registry for Studies of Familial Colorectal Cancer (U01 CA074783). Additional funding toward genetic analyses of OFCCR includes the Ontario Research Fund, the Canadian Institutes of Health Research, and the Ontario Institute for Cancer Research, through generous support from the Ontario Ministry of Research and Innovation.

PLCO is supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics and supported by contracts from the Division of Cancer Prevention, National Cancer Institute, NIH, DCHS. In addition, a subset of control samples was genotyped as part of the Cancer Genetic Markers of Susceptibility (CGEMS) Prostate Cancer GWAS (Yergey, M., and colleagues. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007 May;39(5):645–9), Colon CGEMS pancreatic cancer scan (PanScan) (Amundadottir, L. and colleagues. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet. 2009 Sep;41(9):986–90, and Petersen, G.M. and colleagues. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet. 2010 Mar;42(3):224–8), and the Lung Cancer and Smoking study (Landi M.T., and colleagues. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet. 2009 Nov;85(5):679–90). The prostate and PanScan study datasets were accessed with appropriate approval through the dbGaP online resource (http://www.ncbi.nlm.nih.gov/guid) through accession number phs000207.v1.p1 and phs000206.v3.p2, respectively, and the lung datasets were accessed from the dbGaP website (http://www.ncbi.nlm.nih.gov/gap) through accession number phs000093.v2.p2. Funding for the Lung Cancer and Smoking study was provided by NIH, Genes, Environment and Health Initiative (GEI) 201 CP 010200, NIH U01 HG004446, and NIH GEI U01 HG 004438. For the lung study, the GENEVA Coordinating Center provided assistance with genotype cleaning and general study coordination, and the Johns Hopkins University Center for Inherited Disease Research conducted genotyping.

PMH is supported by NIH (R01 CA131502; P.T. Campbell).

VITAL is supported by NIH (R05 CA154337).

The WHI program is funded by the National Heart, Lung, and Blood Institute, NIH, U.S. Department of Health and Human Services

Thrift et al. supported through the University of Hawaii Colorectal Cancer Family Registry (U01/UI24 CA074806). J.A. Baron was supported through the Familial Colorectal Neoplasia Collaborative Group (U01 CA074799). This work was supported by grants from the NIH (R01 CA151993 to S. Ogino; R01 CA137178 to A. T. Chan; P01 CA53996 and P01 AG14358 to L. Hsu). M. Song was supported by a grant from the NIH (U151CA155626-01). M. Du was supported by a grant from the NIH (R25 CA094880). A.E. Locke was supported by a grant from the NIH (R01 DK062370).
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked

advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received November 26, 2014; revised May 1, 2015; accepted May 1, 2015; published OnlineFirst May 14, 2015.
Mendelian Randomization Study of Body Mass Index and Colorectal Cancer Risk
Aaron P. Thrift, Jian Gong, Ulrike Peters, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-14-1309

Supplementary Material
Access the most recent supplemental material at:
http://cebp.aacrjournals.org/content/suppl/2015/05/15/1055-9965.EPI-14-1309.DC1

Cited articles
This article cites 33 articles, 14 of which you can access for free at:
http://cebp.aacrjournals.org/content/24/7/1024.full#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/24/7/1024.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.