Genome-Wide Association Study of Prostate Cancer-Specific Survival

1Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden. 2Academic Primary Healthcare Center, Stockholm County Council, Karolinska Institute, Stockholm, Sweden. 3The Institute of Cancer Research, London, United Kingdom. 4Royal Marsden National Health Service (NHS) Foundation Trust, London and Sutton, United Kingdom. 5Centre for Cancer Genetic Epidemiology, Department of Applied Health Cancer Genetic Epidemiology, Department of Oncology, University of Oxford, Oxford, United Kingdom. 6Institute of Population Health, University of Manchester, Manchester, United Kingdom. 7Warwick Medical School, University of Warwick, Coventry, United Kingdom. 8Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia. 9Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia. 10Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Grattan Street, Parkville, Victoria, Australia. 11Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California. 12Department of Medical Biochemistry and Genetics, Institute of Biomedicine Klinamtylykakatu 10, University of Turku, Turku, Finland. 13Department of Urology, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland. 14Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark. 15Facility of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. 16Cancer Epidemiology, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. 17Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom. 18Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. 19Clinical Epidemiology, Li Ka Shing Centre, Cambridge, United Kingdom. 20School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom. 21Division of Cancer Epidemiology and Biomarkers (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. 22University College London, Department of Applied Health Research, 1-19 Torrington Place, London, United Kingdom. 23Clinical Gerontology Unit, University of Cambridge, Cambridge, United Kingdom. 24Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. 25Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington. 26Mayo Clinic, Rochester, Minnesota. 27Department of Urology, University Hospital Ulm, Ulm, Germany. 28Institute of Human Genetics, University Hospital Ulm, Ulm, Germany. 29Department of Urology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany. 30Division of Urologic Surgery, Brigham and Womens Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts. 31International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland. 32Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah. 33Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. 34Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. 35German Cancer Research Center (DKFZ), Heidelberg, Germany. 36Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland. 37Department of Medical Research, Brisbane, Queensland, Australia. 38Department of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland. 39Biostatistics Program, Moffitt Cancer Center, Tampa, Florida. 40Biostatistics Program, Moffitt Cancer Center, Tampa, Florida. 41Biostatistics Program, Moffitt Cancer Center, Tampa, Florida. 42Molecular Cancer Epidemiology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia. 43Department of Genetics, Portuguese Oncology Institute, Porto, Portugal. 44Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal. 45The University of Surrey, Guildford, Surrey, United Kingdom. 46Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, Australia. 47Australian Prostate Cancer BioResource, Brisbane, Queensland, Australia. 48Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland. 49Washington University School of Medicine, St. Louis, Missouri. 50Core Genotyping Facility, Frederick National Laboratory for Cancer Research, Gaithersburg, Maryland. 51Epidemiology Research Program, American Cancer Society, Atlanta, Georgia.
Abstract

Background: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical.

Methods: We performed a genome-wide survival analysis of cause-specific death in 24,023 prostate cancer patients (3,513 disease-specific deaths) from the PRACTICAL and BPC3 consortia. Top findings were assessed for replication in a Norwegian cohort (CONOR).

Results: We observed no significant association between genetic variants and prostate cancer survival.

Conclusions: Common genetic variants with large impact on prostate cancer survival were not observed in this study.

Impact: Future studies should be designed for identification of rare variants with large effect sizes or common variants with small effect sizes. Cancer Epidemiol Biomarkers Prev; 24(11): 1796–800. ©2015 AACR.

Introduction

Prostate cancer is the second leading cause of cancer death among men in the developed world. Randomized trials have shown that PSA-based screening can reduce prostate cancer mortality up to 40%, though at the cost of considerable overdiagnosis and overtreatment of indolent disease (1). Thus, improved tools to distinguish lethal from indolent disease to guide clinicians in treatment decisions are critical. Epidemiologic studies support the existence of a genetic component to prostate cancer prognosis (2). The purpose of this study was to identify SNPs associated with prostate cancer-specific survival. We performed a genome-wide search among individuals from two large prostate cancer genetics consortia (PRACTICAL; ref. 3) and BPC3 (4) with replication of top findings in a Norwegian prostate cancer cohort (CONOR).

Materials and Methods

Study populations and genotyping

In total, 24,023 prostate cancer patients with follow-up on cause-specific death from the PRACTICAL (n = 21,241) and BPC3 (n = 2,782) consortia were included in the present study (Table 1). All men from BPC3 have an aggressive disease, defined by a tumor Gleason score of eight or above. Participants had either been genotyped on a custom-designed SNP chip (iCOGS) with 211,155 markers or on standard genome-wide arrays (Table 1). Imputation was performed using a cosmopolitan panel from the 1000 Genomes Project (March 2012) to increase the genetic coverage. Only SNPs that had an imputation quality above 0.75 and minor allele frequency (MAF) above 1% were assessed (1.2–9.5 million SNPs in each separate study, Table 1). Detailed information regarding study populations, genotyping, and imputation is found in (3) and (4).

Statistical analysis

Within each study, SNPs were assessed for association with disease survival, assuming an additive genetic effect, in a Cox regression model allowing for left truncation and right censoring of observational times. Results were combined in fixed-effects meta-analysis. In the discovery stage, we considered an association to be genome-wide significant if the overall meta-analysis achieved P < SE–08 and the test for heterogeneity across studies was nonsignificant (P > 0.05). We also adjusted the most associated SNPs for population structure (principal components), age at diagnosis, diagnostic PSA, and Gleason score, but we did not observe any confounding (data not shown).

Replication

Genome-wide significant SNPs in the discovery stage were directly genotyped in 1,783 individuals from the UKGPCS1 study (Table 1) using TaqMan assays to verify imputation quality, evaluated as the concordance rate between imputed and genotyped data (percentage of individuals correctly classified by imputation). Significant SNPs from the discovery stage with satisfactory imputation qualities were assessed for replication in a Norwegian case–cohort study (CONOR; ref. 5) comprising 1,496 prostate cancer patients.
We performed a genome-wide search for SNPs associated with prostate cancer survival by combining data from the PRACTICAL and BPC3 consortia. Our null finding is in line with previous smaller studies (8) and implicates that the existence of common genetic variants with large effect sizes is unlikely. We would however like to stress that our analysis was based on imputed data and some areas of the genome were not well represented due to a low number of SNPs with good imputation quality.

Despite a reasonably large replication sample, we saw no evidence of association among the four SNPs that were initially found to be genome-wide significant (P < 5E–08). Two of these SNPs were rare, in which spurious associations occur more easily. It is however more surprising that the two common SNPs (MAF, 7%–8%) and eight rare variants (MAF, 1%–2%) were false positives. This underlines the importance of independent replication in genetic association studies.

From this study, we conclude that the search for SNPs that are associated with prostate cancer survival should focus on the identification of rare variants with large effect sizes or common variants with small effect sizes. Large study populations with complete follow-up information regarding survival are warranted to successfully achieve this task.
Table 2. Genome-wide assessment of prostate cancer survival

<table>
<thead>
<tr>
<th>SNP CHR:BP</th>
<th>Alleles</th>
<th>MAF</th>
<th>Total number of PC/deaths</th>
<th>HR (95% CI) P value</th>
<th>Conor HR (95% CI) P value</th>
<th>All studies* HR (95% CI) P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs190087062</td>
<td>G/A</td>
<td>0.02</td>
<td>2,416/704</td>
<td>2.83 (1.99–4.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t15061785</td>
<td>A/G</td>
<td>0.02</td>
<td>20,051/3,729</td>
<td>1.75 (1.44–2.13)</td>
<td>0.88 (0.42–1.85)</td>
<td>1.67 (1.38–2.03)</td>
</tr>
<tr>
<td>rs19997855</td>
<td>G/A</td>
<td>0.02</td>
<td>23,251/3,274</td>
<td>1.29 (1.18–1.41)</td>
<td>1.01 (0.76–1.35)</td>
<td>1.26 (1.16–1.38)</td>
</tr>
<tr>
<td>rs76010824</td>
<td>A/G</td>
<td>0.07</td>
<td>2.86 (0.8–8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs11414857</td>
<td>G/A</td>
<td>1.75</td>
<td>17,146/2,236</td>
<td>1.98 (1.56–2.50)</td>
<td>1.78 (0.8–8)</td>
<td></td>
</tr>
<tr>
<td>rs135990166</td>
<td>G/A</td>
<td>0.02</td>
<td>1,730/464</td>
<td>3.54 (2.31–5.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs192864773</td>
<td>G/A</td>
<td>0.01</td>
<td>3,186/1,577</td>
<td>1.93 (1.53–2.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs117643112</td>
<td>C/A</td>
<td>0.01</td>
<td>2.01 (0.93–3.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1304659849</td>
<td>A/G</td>
<td>0.02</td>
<td>2.702/271</td>
<td>3.00 (2.06–4.36)</td>
<td>0.75 (0.24–2.33)</td>
<td>2.61 (1.83–3.73)</td>
</tr>
<tr>
<td>rs201949337</td>
<td>A/T</td>
<td>0.01</td>
<td>2.975/3,324</td>
<td>1.17 (1.20–1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs126653357</td>
<td>G/T</td>
<td>0.08</td>
<td>1.50–7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BP, base position (Genome build 37); CHR, chromosome; 95% CI, 95% confidence interval.
*Minor allele/major allele. Minor allele used as effect allele (major as reference) in analysis.
**Proxy for rs190977150 (P = 9.5E-09 in PRACTICAL and BPC3).

Table 2 continued

Disclosure of Potential Conflicts of Interest
R.A. Eeles has received speakers bureau honoraria from Succinct Communications. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Other (attendance at working group meetings): M.C. Southey

Other (provided samples and data to the manuscript): A. Michael

References

Genome-Wide Association Study of Prostate Cancer–Specific Survival

Updated version
Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-15-0543

Supplementary Material
Access the most recent supplemental material at:
http://cebp.aacrjournals.org/content/suppl/2015/08/25/1055-9965.EPI-15-0543.DC1

Cited articles
This article cites 8 articles, 4 of which you can access for free at:
http://cebp.aacrjournals.org/content/24/11/1796.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.