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Abstract
Background: Volatile organic compounds (VOC) from tobacco smoke are associated with cancer, cardio-

vascular, and respiratory diseases. The objective of this study was to characterize the exposure of nonsmokers

to VOCs from secondhand smoke (SHS) in vehicles using mercapturic acid metabolites.

Methods:Fourteennonsmokerswere individually exposed in thebackseat to onehour of SHS froma smoker

seated in the driver’s seat who smoked three cigarettes at 20-minute intervals in a stationary carwithwindows

opened by 10 cm. Baseline and 0- to 8-hour postexposure mercapturic acid metabolites of nine VOCs were

measured in urine. Air-to-urine VOC ratioswere estimated on the basis of respirable particulatematter (PM2.5)

or air nicotine concentration, and lifetime excess risk (LER) of cancer death from exposure to acrylonitrile,

benzene, and 1,3-butadiene was estimated for adults.

Results: The greatest increase in 0- to 8-hour postexposure concentrations of mercapturic acids from

baseline was MHBMA-3 (parent, 1,3-butadiene; 2.1-fold), then CNEMA (acrylonitrile; 1.7-fold), PMA (ben-

zene; 1.6-fold), MMA (methylating agents; 1.6-fold), and HEMA (ethylene oxide; 1.3-fold). The LER of cancer

death from exposure to acrylonitrile, benzene, and 1,3-butadiene in SHS for 5 hours aweek ranged from 15.5�
10�6 to 28.1 � 10�6 for adults, using air nicotine and PM2.5 to predict air VOC exposure, respectively.

Conclusion:Nonsmokers have significant intake ofmultiple VOCs frombreathing SHS in cars, correspond-

ing to health risks that exceed the acceptable level.

Impact: Smoking in cars may be associated with increased risks of cancer, respiratory, and cardiovascular

diseases among nonsmokers. Cancer Epidemiol Biomarkers Prev; 23(12); 2774–82. �2014 AACR.

Introduction
Exposure to secondhand smoke (SHS), a combination of

the smoke emitted at the burning tip of a cigarette and
smoke exhaled by the smoker, is associated with an array
of adverse health effects (1). Although public health
efforts such as smoke-free air policies in workplaces and
public places have been successful in reducing exposure
to SHS (2) and related diseases (3, 4), 126 million people
remain exposed to SHSdaily in theUnited States, ofwhich
22 million are children (1, 5). Furthermore, the decline in
SHS exposure amongnonsmokers has been slower among

children than adults (6, 7). Exposure to SHS in childhood
is linked to an increased risk of asthma, sudden infant
death syndrome (SIDS), otitis media, upper respiratory
tract infections, and behavioral problems (5).

Motor vehicles (cars) are an important source of expo-
sure to SHS in children. On average, people spend more
than an hour a day in motor vehicles (8) and smokers
often smoke while driving or as passengers. The prev-
alence of SHS exposure was found to be higher in cars
(9.2%) than in homes (6.0%) among adults enrolled in
the National Adults Tobacco Survey (9). Also, as many
as 48% of smoking parents smoke with children present
in the car (10).

Estimation of the health risks associated with SHS in
cars depends on accurate measurement of exposure.
Although air particulate matter less than 2.5 mm (PM2.5),
carbon monoxide (CO), and nicotine have been used to
characterize SHS exposure in cars (11, 12), biomarkers
constitute the most objective method of measuring intake
or dose. Few published studies have reported on biomar-
kers of exposure to SHS in vehicles. In one study, urine
cotinine, the primary proximate metabolite of nicotine,
was measured in nonsmoking adults and children after 2
hours of heavySHSexposure from78smoked cigarettes in
a tour bus with closed windows (13). This study vastly
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overestimates most SHS exposure scenarios in automo-
biles in the United States. In a recent study, we presented
the 24-hour time course of biomarkers of nicotine and
tobacco-specific nitrosamines in nonsmokers after an
hour exposure to SHS from three smoked cigarettes in a
stationary car (14).
Volatile organic compounds (VOC) represent an impor-

tant class of carcinogens, toxicants, and/or irritants pres-
ent in tobacco smoke (15). It is thought that the gas phase
constituents in mainstream tobacco smoke contribute
heavily toward tobacco smoke cancer, cardiovascular,
and respiratory risk indices (16, 17). Intake of VOCs can
bemeasured using highly specificmercapturic acidmeta-
bolites formed from glutathione S-conjugates (GSH) via
the mercapturic acid pathway and excreted in the urine
(18). VOC mercapturic acid metabolites have been mea-
sured in cigarette smokers, water pipe users, and non-
smokers (18–21).
Although a few studies have reported mercapturic

acid metabolite excretion in people who may have been
exposed to SHS (22), to the best of our knowledge, no
study has reported pre- and post-SHS exposure levels of
mercapturic acids. The aim of this study was to inves-
tigate the simultaneous excretion of mercapturic acid
metabolites of nine different VOCs following 1-hour
exposure to SHS in a stationary automobile. As a sec-
ondary aim, we used PM2.5 concentrations measured in
a concurrent study (23) to estimate air VOC to urine
mercapturic acid ratios that can be used in computa-
tions of lifetime excess risk (LER) of lung cancer and
cancers associated with exposure to benzene and 1,3-
butadiene, two known human carcinogens, and acrylo-
nitrile, a probable human carcinogen. The LER is excess
cancer risk caused by exposure to an agent that is in
addition to any cancer risk carried by an individual not
exposed to the agent.

Materials and Methods
Overview
The data presented in this paper were collected as part

of a study of SHS exposure in motor vehicles, the details
of which have been published previously (23). The study
was conducted in the Clinical Research Center (CRC) at
San Francisco General Hospital (SFGH; San Francisco,
CA) and in an automobile parked in a nearby parking
lot. The engine of the vehicle was off for the duration of
the exposure period and the vehicle remained station-
ary. A 1992 Jeep Cherokee owned by a smoker was used
in the study. The smoker sat in the driver’s seat and
smoked three cigarettes over the course of an hour (at 0,
20, and 40 minutes). The cigarette was held in the
smoker’s right hand. A nonsmoking participant sat in
the right rear seat of the car. The front and rear windows
of the Jeep were open 10 cm. This opening was selected
on the basis of informal discussion with nonsmokers
exposed to SHS and seemed to be the minimum opening
that would be generally tolerated. Air sampling devices

were collocated in the middle of the backseat and tube
inlets were placed at the approximate breathing zone.
Air concentrations of tobacco smoke constituents have
been previously reported (23).

Fourteen nonsmokers and one active smoker partici-
pated in the study. The smoker’s role was limited to
smoking cigarettes in the car during the 1-hour SHS
exposure period. The nonsmoking participants were bal-
ancedby sexandwerehealthywith recent histories of SHS
exposure but were asked to avoid SHS exposure 7 days
before the study day. Prior exposure was required to
ensure thatwewerenot exposing subjects to anunfamiliar
risk. Nonsmoking status was determined by self-report
and confirmed by plasma cotinine concentrations. Exclu-
sion criteria included a history of recent respiratory ill-
ness, history of major medical or psychiatric conditions,
body mass index > 30, pregnancy or lactation, current
illicit drug or alcohol abuse, inability to speakEnglish, or a
history of fainting.

The study was approved by the Committee on Human
Research (CHR) at the University of California, San Fran-
cisco (San Francisco, CA). Written, informed consent was
obtained from each participant and all participants were
financially compensated for their time.

Study procedures and biosampling
The nonsmoking participants arrived at the Tobacco

Research Center, (a UCSF outpatient research clinic near
SFGH) by 7 am. An intravenous line for blood sampling
was placed and baseline blood and preexposure urine
samples were collected. Between 8 am and 9 am, the
participant was escorted to the clinic parking lot and
asked to sit in the right back seat of the car, while the
smoker sat in the driver’s seat. Three cigarettes in total
were smoked at 20-minute intervals (timed by a research
coordinator), starting at time 0 when the nonsmoker
entered the car. The same brand of cigarettes, Marlboro
Regulars, was smoked at each exposure session. There
was only one smoking session per study day. The
smoker was instructed to smoke each cigarette in the
same way. The average weight of cigarettes consumed
per session was 1.99 g (min–max, 1.55–2.35) and the
mean change in expired CO in the smoker was 16.1 ppm
(8–31). The nonsmoker exited the car 60 minutes after
the lighting of the first cigarette. The subject then went to
the SFGH CRC, a research ward, for a 24-hour stay. At
the CRC, blood samples were taken at 15, 30, 45, 60, and
90 minutes, and 2, 3, 4, 6, 8, 12, 16, and 24 hours after
exiting the vehicle; and plasma was analyzed for con-
centrations of cotinine. Urine was collected postexpo-
sure in blocks of 0 to 4, 4 to 8, 8 to 12, and 12 to 24 hours.
Urine was analyzed for concentrations of VOC mercap-
turic acid metabolites and creatinine, as well as biomar-
kers of other tobacco smoke constituents, the results of
which will be reported elsewhere.

Details of air sampling procedures inside the car and
ambient (background) for nicotine, CO, and PM2.5 have
been described previously (23).
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Analytical chemistry
The following mercapturic acid metabolites of VOCs

were measured in the preexposure, 0 to 4 and 4 to 8-hour
urine samples—shown as mercapturic acid metabolite
(parent compound) by previously described methods
(21): 2-carbamoylethylmercapturic acid (AAMA; acryl-
amide); 2-cyanoethylmercapturic acid (CNEMA; acrylo-
nitrile); 2-hydroxyethylmercapturic acid (HEMA; ethyl-
ene oxide); 2-hydroxypropylmercapturic acid (2-HPMA;
propylene oxide); 3-hydroxypropylmercapturic acid (3-
HPMA; acrolein); 4-hydroxy-2-buten-1-yl-mercapturic
acid (MHBMA-3; butadiene); phenylmercapturic acid
(PMA; benzene); 3-hydroxy-1-methyl-propylmercapturic
acid (HMPMA; crotonaldehyde); and,methylmercapturic
acid [MMA; (methylating agents such as 4-(methylnitro-
samino)-1-(3-pyridyl)-1- butanone (NNK) and N-nitroso-
dimethylamine (NDMA)]. VOC metabolites were not
measured beyond the 0- to 8-hour urine samples because
8 hours is sufficient to capture most of the additive VOC
exposure over baseline. Urine samples over 8 hours
were expected to be at or near baseline levels given the
rapid initial half-lives of VOCs and elimination from the
body (24).

Statistical analysis
Descriptive statistics were computed for preexposure

(baseline), 0 to 8 hours postexposure, and maximum
(peak) postexposure concentrations of mercapturic acid
metabolites (arithmetic means, geometric means, and
medians). Within-subject differences in pre- and postex-
posure biomarker concentrations were assessed using
Wilcoxon signed rank test. Statistical analyses were car-
ried out using SASv. 9.3 (SAS Institute, Inc.) and statistical
tests were considered significant at a ¼ 0.05.

The cancer risk due to inhalation of VOCs in SHS can be
computed using Equation 1, which was applied recently
to estimate cancer risks from VOC exposure among
patrons and servers exposed to SHS in restaurants and
bars (25). Although only PM2.5 concentrations were used
in that analysis to estimate VOC exposure from SHS in the
absence of air VOC measurements, air nicotine concen-
trations can be similarly used.

LERof cancers ¼ CSHS-VOCðmg=m3Þ �AURðmg=m3Þ�1

CSHS-VOCðmg=m3Þ ¼ CSHS-PMðmg=m3Þ
� ðEFSHS-VOC=EFSHS-PMÞ � F

or; CSHS-VOCðmg=m3Þ ¼ Cnicotineðmg=m3Þ
� ðEFSHS-VOC=EFnicotineÞ � F ð1Þ

where CSHS-VOC is the daily average concentration of a
SHS-VOCduring a lifetime of 70 years andAUR is the Air
Unit Risk reported by the U.S. Environmental Protection
Agency (U.S. EPA) for carcinogens. AUR is the increase
in the lifetime risk for an individual who is exposed to 1
mg/m3 of a chemical for a lifetime (70 years), assuming 20
m3/day of inhalation (26). In predicting CSHS-VOC from
PM2.5 or air nicotine, CSHS-PM is the average concentration

of SHS-PM2.5 during the exposure period; Cnicotine is the
average concentration of nicotine in air during the expo-
sure period; and EFSHS-VOC, EFSHS-PM, and EFnicotine are
the average cigarette emission factors (EF) of SHS-VOC,
SHS-PM2.5, and nicotine from the literature. F is the
adjustment factor, which is 1 hour/day � 0.5 m3/hour/
(20 m3/day) � 5 day/7 day � 51 years/70 years for an
adult (�19 years) who is exposed to SHS in cars for an
average of 1 hour aday,with an average respiration rate of
0.5 m3/hour at sedentary activity level (27), and is
exposed 5 days a week for 51 years (19–70 years).

We computed air to urine VOC ratios [VOC
ratio(air to urine)] for acrylonitrile, benzene, and 1,3-buta-
diene using average time-integrated PM2.5 and air nico-
tine measured over the exposure period, the average EF
computed by Liu and colleagues (28), and the average
increase in the respective baseline-corrected mercapturic
acid metabolite concentration [VOC(urine)] as shown in
Equation 2.

VOC ratio ðair to urineÞ ðmg=m3Þ * ðng=mgcreatinineÞ�1

¼ CSHS-PMðmg=m3Þ � ðEFSHS-VOC=EFSHS-PMÞ
�VOCðurineÞ ðng=mgcreatinineÞ

Or;

VOC ratio ðair to urineÞ ðmg=m3Þ * ðng=mgcreatinineÞ�1

¼ Cnicotineðmg=m3Þ � ðEFSHS-VOC=EFnicotineÞ
�VOCðurineÞ ðng=mgcreatinineÞ ð2Þ

The VOC ratio(air to urine) reported here can be used to
predict CSHS-VOC as shown in Equation 3 to estimate
cancer risks in studies where PM2.5, nicotine, or VOCs
were not measured in air.

CSHS-VOC ðmg=m3Þ ¼ VOC ratioðair to urineÞ
� study-DVOCðurineÞ � F ð3Þ

where study-DVOC(urine) is the change inmercapturic acid
metabolites following SHS exposure in a study andF is the
study’s population-specific adjustment factor.

Results
Table 1 presents the average concentrations of PM2.5,

CO, and nicotinemeasured inside and outside the car and
the ventilation rates in the car. Air measurements have
been reported in greater detail as "Set 2" in a previous
manuscript (23). Descriptive statistics (arithmetic mean
and median) of preexposure, 0 to 8-hour postexposure,
maximum postexposure concentrations, and changes in
concentrations of nine mercapturic acid metabolites of
VOCs are presented in Table 2. Figure 1 presents geomet-
ric means and 95% confidence intervals (CI) of the nine
mercapturic acidmetabolitesmeasured in baseline, 0 to 4-
hour, and 4 to 8-hour urine samples.

Of the ninemercapturic acidmetabolites measured, the
average 0 to 8-hour postexposure concentrations of
CNEMA (parent compound, acrylonitrile), HEMA (eth-
ylene oxide), MHBMA (butadiene), MMA (methylating
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agents), and PMA (benzene) were significantly higher
than preexposure levels. Zero to 8-hour postexposure
CNEMA increased 1.7-fold, HEMA increased 1.3-fold,
MHBMA-3 increased 2.1-fold, MMA increased 1.6-fold,
andPMA increased 1.6-fold. Themaximumpostexposure
concentrations of 2-HPMA (propylene oxide; 2.3-fold
increase from baseline), CNEMA (1.9-fold), HEMA (1.4-
fold), HMPMA (crotonaldehyde; 1.6-fold), MHBMA-3
(2.7-fold), MMA (1.9-fold), and PMA (1.6-fold) were sig-
nificantly higher than preexposure concentrations.
The parameters used to estimate air to urine VOC ratios

and LER of death from cancer for acrylonitrile, benzene,
and 1,3-butadiene are shown in Table 3. The ratios were
estimated using the baseline-corrected 0 to 8-hour post-
exposure concentrations (time-weighted average concen-
trations), the baseline-corrected peak concentrations of
the mercapturic acid metabolites (similar to a spot urine
concentrations), and the measured time-integrated PM2.5

and air nicotine. The estimated air to urine ratios of VOCs
obtained using PM2.5 were approximately double the
estimated ratios using air nicotine. The LER of overall
cancer death, representing the sumof risks from exposure
to acrylonitrile, benzene, and 1,3-butadiene emitted in
SHS for adults, was 15.5 � 10�6 using air nicotine to
estimate the air VOC exposure and 28.1 � 10�6 using
PM2.5 to estimate the air VOC exposure.

Discussion
We present novel data on the concentrations of nine

mercapturic acid metabolites of toxic or carcinogenic
VOCs following 1 hour of individual exposure to SHS in
a stationary car with all windows partially opened by 10
cm. Of the ninemercapturic acidmetabolites measured in

urine, seven increased significantly following SHS expo-
sure (we assessed changes in biomarkers as either within-
subject 0 to 8-hour postexposure concentration minus
baseline concentration or within-subject peak postexpo-
sure concentration minus baseline concentration). These
include 2-HPMA (parent compound, propylene oxide),
CNEMA (acrylonitrile), HEMA (ethylene oxide),
HMPMA (crotonaldehyde), MHBMA-3 (butadiene),
MMA (methylating agents), and PMA (benzene). The
greatest increase in 0 to 8-hour postexposure compared
with baselinewas forMHBMA-3 (1,3-butadiene; 2.1-fold),
followed by CNEMA (acrylonitrile; 1.7-fold), PMA (ben-
zene; 1.6-fold), MMA (methylating agents; 1.6-fold), and
HEMA (ethylene oxide; 1.3-fold). These findings provide
evidence that smoking in cars leads to systemic exposure
of toxic and/or carcinogenic VOCs in nonsmokers. Fur-
thermore, we provide the first estimates of air to urine
VOC ratios that can be used to compute LERs for cancer
deaths from exposure to acrylonitrile, benzene, and 1,3-
butadiene based on urine VOC metabolite data. The LER
of overall cancer death from exposure to these threeVOCs
for adults ranged from 15.5� 10�6 to 28.1� 10�6, depend-
ing on whether air nicotine or PM2.5 was used to estimate
air VOC exposure.

Exposure to SHS in various settings, including bars,
casinos, and outdoor locations, results in absorption of
toxic tobacco smoke constituents such as tobacco-specific
nitrosamines (29–31), which are known to be associated
with increased risk of lung cancer (32). Besides lung
cancer, SHS causes stroke, nasal irritation, reproductive
effects in women, and coronary heart disease in adults,
and middle ear disease, impaired lung function, lower
respiratory illness, and SIDS in children (33). Given the
wide array of SHS-related diseases, data on intake of
tobacco smoke constituents other than tobacco-specific
nitrosamines are essential to assessing SHS health risks
beyond lung cancer.

The emergence of VOCs as an important class of tox-
icants in tobacco smoke due to their biologic activity and
overall high levels in tobacco smoke underscores the need
for data on VOC exposure from SHS (25). Risk assessment
models show that four VOCs, namely, 1,3-butadiene, acry-
lonitrile, acetaldehyde, andbenzene, areamong the topfive
constituents of mainstream cigarette smoke with the high-
est cancer risk indices, arsenic being the other, and acrolein
has the highest noncancer risk index for respiratory effects
(16). Benzene and 1,3-butadiene are known human carci-
nogens (GroupA,U.S. EPA cancer classification). Benzene,
an aromatic compound formed through incomplete com-
bustion, is generated at average levels of 431 mg per ciga-
rette (range, 263–590 mg per cigarette), whereas 1,3-buta-
diene, an unsaturated hydrocarbon, is generated at an
average of 279 mg per cigarette (range, 157–400 mg per
cigarette; ref. 25; Supplementary Materials). Benzene is
known to cause leukemia (34) and 1,3-butadiene causes
lymphohematopoietic cancers in humans (35). Acryloni-
trile (Group B1), ethylene oxide (GroupB1), and propylene
oxide (Group B2) are probable human carcinogens; and

Table 1. Average air measurements of
respirable PM2.5, CO, nicotine, and ventilation
rates over the exposure period

Air measurement n Mean � SD

PM2.5 (mg/m3)
Inside of the car 13 1,172 � 503
Outside of the car 13 17.7 � 12.8

Carbon monoxide (ppm)
Dashboard 12 3.3 � 1.7
Middle 12 2.5 � 1.2
Back 12 2.5 � 0.9

Nicotine (mg/m3)
Inside of the car 13 65.6 � 107.9
Outside of the car 10 0.06 � 0.08

Air changes per hour
Dashboard 11 6.0 � 1.8
Middle 12 5.0 � 1.7
Back 10 3.4 � 0.9

NOTE: Measurements of air exposure for this study have
been previously published and referred to as "Set 2" (23).
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crotonaldehyde is a possible human carcinogen (Group C;
ref. 26). Acrylonitrile, which is suspected of causing lung
cancer in humans (36, 37), is emitted at 170 mg per cigarette
(range, 99–250 mg per cigarette; ref. 25).
Our finding of substantial increases ofmercapturic acid

metabolites of known or suspected human carcinogens in
this study supports the biologic plausibility that nonsmo-
kers exposed to SHS in cars are at increased risk of cancers
of various types. We estimated an LER for overall death
from cancers associated with acrylonitrile, benzene, and
1,3-butadiene under our study’s exposure conditions to
range from 15.5� 10�6 to 28.1� 10�6 for adults, which are
comparable with the LER for cancer deaths estimated
fromexposure to these three SHSVOCs among restaurant
and bar servers in Minnesota (21.4 � 10�6; ref. 25). Expo-
sure to these three chemicals alone is sufficient to increase
the LER substantially above the de minimis risk of 1� 10�6

(the level of risk at which regulation is not warranted).
Acrolein and acrylamide have not been shown to be

carcinogenic in humans. Nonetheless, acrolein is of spe-

cial interest as an etiologic agent for cigarette smoke-
related cancers because it causes DNA damage in the
p53 tumor suppressor genes and inhibits DNA repair
(38), andalso because of itsmajor effects on the respiratory
tract (16). Acrolein is emitted from tobacco smoke at
similar rates as benzene and 1,3-butadiene (25, 32).
Despite the relatively high concentrations of acrolein in
tobacco smoke, we did not find significant changes in its
metabolite, 3-HPMA, following SHS exposure. This may
be due to the high reactivity of acrolein such that air
concentrations decline quickly due to reactionswith other
chemicals in air or on surfaces (39). The acrylamide
metabolite, AAMA, did not increase post-SHS exposure
also. It is likely that sources other than tobacco smoke,
such as diet, contributed to acrolein and acrylamide expo-
sure to a greater extent than SHS (40, 41).

VOCs are ubiquitous in the environment, as demon-
strated by the measurable levels of mercapturic acids at
baseline (before SHS exposure) in this study. For exam-
ple, vehicle exhaust is a source of VOCs. Emission rates

Figure 1. Concentrations of
mercapturic acid metabolites of
VOCs in baseline (BL) and 0 to 4
and 4 to 8-hour postexposure urine
samples. Values are geometric
means and 95%CIs. (� significantly
different from BL, a < 0.05).
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of select VOCs from vehicle tailpipes include benzene,
11,900 mg/km; acrolein, 60 mg/km; crotonaldehyde,
1,760 mg/km (42); and 1,3-butadiene, 2,100 mg/km
(43). In our study, baseline levels of 2-HPMA, 3-HPMA,
AAMA, CNEMA, HMPMA, MHBMA-3, and PMA in
our subjects were at least 2-fold lower than levels mea-
sured in nonsmokers in the U.S. general population;
HEMAwas 4-fold higher at baseline in the current study
participants than in the U.S. general population (44).
Given that tobacco smoke is a major source of VOCs to
nonsmokers, lower baseline mercapturic acid levels in
our subjects compared with the U.S. general population
are consistent with lower smoking rates and lower levels
of SHS exposure in California (particularly in the San
Francisco Bay area) compared with other states (45).
Comparisons of background levels of mercapturic acids
across studies should be done cautiously due to differ-
ences in dietary and environmental exposures in differ-
ent populations and differences in assay performance at
low concentrations.

Although cancer is a major concern for adults, diseases
such as asthma and other respiratory outcomes are pri-
mary concerns for children. The average 1-hour time-
integrated, background-corrected PM2.5 (1,155 mg/m3)

measured concurrently in this study exceeds threshold
levels that are considered hazardous by the U.S. EPA
National Ambient Air Quality Standard (NAAQS). Even
when averaged over 24 hours (since the NAAQS is a 24-
hour standard), the average PM2.5 levels correspond to an
Air Quality Index that is deemed unhealthy for sensitive
groups. Respiratory outcomes are expected at these high
PM2.5 levels. Exposure to VOCs is also known to be
associatedwith asthma inboth children andadults (46, 47).

Compared with the mercapturic acid concentrations
reported here, 24-hour postexposure concentrations of
AAMA, CNEMA, 3-HPMA, 2-HPMA, MHBMA, and
PMAranged fromapproximately 2-fold (PMA) to approx-
imately 35-fold (CNEMA) higher among cigarette smo-
kers in a recent study from our research group (21). It
should be noted, however, that there is no risk-free level of
carcinogens, and all seven biomarkers that increased
significantly postexposure are mercapturic acid metabo-
lites of human or animal carcinogens.

A limitation of our study is that our exposure scenario
may not be representative of most smoking situations in
cars. We used a stationary car with partially opened win-
dows, and ventilation in this scenario is lower than most
moving carswithwindows in various configurations and/

Table 3. Parameters used to estimate air-to-urine ratio of VOC and computations of LER of cancer from
exposure to acrylonitrile, benzene, and 1,3-butadiene

Parameters Acrylonitrile Benzene 1,3-Butadiene

Background-corrected PM2.5 measured in car (mg/m3)a 1,155 1,155 1,155
Background-corrected nicotine measured in car (mg/m3)a 65.5 65.5 65.5
Baseline-corrected 0–8-h urine VOC (ng/mg creat) 0.915 0.109 0.275
Baseline-corrected max urine VOC (ng/mg creat) 1.150 0.144 0.429
PM2.5 EF (mg/cig)b 1,2471 1,2471 1,2471
Nicotine EF (mg/cig)b 1,274 1,274 1,274
VOC EF (mg/cig)b 170 431 279
Adult respiration rate—sedentary (�19 y), (m3/h) 0.5 0.5 0.5
Average hours per day exposed in car (h/d) 1 1 1
Days per week exposed to SHS in car (d/wk) 5 5 5
Number of years exposed to SHS 51 51 51
A. Estimation of air to urine VOC ratio using PM2.5

Estimated air VOC levels based on air PM2.5 (mg/m3) 15.7 39.9 25.8
Air VOC to 0–8 h urine VOC ratio (mg/m3)*(ng/mg creat)�1 17.2 366.2 94.0
Air VOC to max urine VOC ratio (mg/m3)*(ng/mg creat)�1 13.7 277.4 60.3

B. Estimation of air to urine VOC ratio using air nicotine
Estimated air VOC levels based on air nicotine (mg/m3) 8.74 22.2 14.3
Air VOC to 0–8 h urine VOC ratio (mg/m3)*(ng/mg creat)�1 9.55 203.3 52.2
Air VOC to max urine VOC ratio (mg/m3)*(ng/mg creat)�1 7.60 154.0 33.4

C. Lifetime excess risk (LER) for cancer deaths
EPA AUR (�10�6) 68 7.8 30
LER for VOC predicted from PM2.5 (�10�6) 13.9 4.1 10.1
LER for VOC predicted from air nicotine (�10�6) 7.7 2.2 5.6

NOTE: U.S. EPA AUR are obtained on EPA's Integrated Risk Information System at http://www.epa.gov/iris/.
aCorrected PM2.5 and nicotine ¼ inside concentration minus outside concentration.
bEFs are average values of published SHS EFs and summarized by Liu and colleagues in a Supplementary Material (25).
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orair conditioningsystemon.Wealsousedonlyone typeof
cigarette. Although it is likely that we have overestimated
SHS exposure for some people using our exposure scenar-
io, namely, cars being driven with windows opened, air
concentrations of PM2.5, CO, and nicotine previously
reported from this study (23) are consistent with other
studies of PM2.5, CO, and air nicotine after cigarettes are
smoked in closed cars and at various ventilation system
configurations (11, 48, 49). Given the lower SHS levels in
cars beingoperatedwith openedwindows, the LERof lung
cancer may be lower than what we have estimated under
the current scenario. Furthermore, the LER of cancer risk
was estimated from exposure to just the three VOCs for
which we had AUR data and are human or probable
human carcinogens. SHS contains a number of other car-
cinogenic chemicals, so our risk estimate is low. Likewise,
our risk estimate is low because we did not consider
potential childhood exposure to VOCs. We did not do that
because of difficulty modeling changing ventilatory rates
across the years of childhood. We know that children
experience even higher levels of systemic exposure to
chemicals in SHS than do adults, and LER would have
been higher had we included childhood exposure.

Conclusion
This is the first study, to the best of our knowledge,

which shows increased excretion of mercapturic acid
metabolites of toxic or carcinogenic VOCs after brief
exposure to SHS. The greatest increase in 0 to 8-hour
postexposure compared with baseline was for
MHBMA-3 (1,3-butadiene; 2.1-fold), then CNEMA (acry-
lonitrile; 1.7-fold), PMA (benzene; 1.6-fold), MMA (meth-
ylating agents; 1.6-fold), and HEMA (ethylene oxide; 1.3-
fold). These results support the idea that smoking in cars
may be associated with increased risks of cancer, respi-
ratory, and cardiovascular diseases among nonsmokers.

Children and nonsmoking adults with preexisting condi-
tions such as asthma and a history of cardiovascular
diseases should be protected from SHS exposure in cars.
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