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Abstract
Background:Mammographic density adjusted for age and body mass index (BMI) is a heritable marker of

breast cancer susceptibility. Little is knownabout the biologicmechanisms underlying the association between

mammographic density and breast cancer risk. We examined whether common low-penetrance breast cancer

susceptibility variants contribute to interindividual differences in mammographic density measures.

Methods: We established an international consortium (DENSNP) of 19 studies from 10 countries, com-

prising 16,895 Caucasian women, to conduct a pooled cross-sectional analysis of common breast cancer

susceptibility variants in 14 independent loci and mammographic density measures. Dense and nondense

areas, and percent density, were measured using interactive-thresholding techniques. Mixed linear models

were used to assess the association between genetic variants and the square roots of mammographic density

measures adjusted for study, age, case status, BMI, and menopausal status.
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Results: Consistent with their breast cancer associations, the C-allele of rs3817198 in LSP1 was positively

associatedwith both adjusteddense area (P¼ 0.00005) and adjustedpercent density (P¼ 0.001),whereas theA-

allele of rs10483813 in RAD51L1 was inversely associated with adjusted percent density (P ¼ 0.003), but not

with adjusted dense area (P ¼ 0.07).

Conclusion: We identified two common breast cancer susceptibility variants associated with mammo-

graphic measures of radiodense tissue in the breast gland.

Impact:We examined the association of 14 established breast cancer susceptibility loci withmammographic

density phenotypes within a large genetic consortium and identified two breast cancer susceptibility variants,

LSP1-rs3817198 and RAD51L1-rs10483813, associated with mammographic measures and in the same direc-

tion as the breast cancer association. Cancer Epidemiol Biomarkers Prev; 21(7); 1156–66. �2012 AACR.

Introduction
Genetic factors play a major role in the pathogenesis of

breast cancer (1–3). Recent multistage genome-wide asso-
ciation studies (GWAS) and candidate gene studies con-
ducted by several groups, including the Breast Cancer
Association Consortium (BCAC), have successfully iden-
tified and replicated associations between over 18 single-
nucleotidepolymorphisms (SNP) and risk of breast cancer
in Caucasians (4–9).
Mammographicdensity,which reflects variations in the

amounts of fat, stromal, and epithelial tissues in thebreast,
is one of the strongest risk factors for breast cancer with
risk being 4- to 6-fold higher for women in the highest
relative to lowest density categories after adjusting for age
and body mass index (BMI; refs. 10, 11). The biology
underlying the mammographic density and breast cancer
association is essentially unknown, but twin and family
studies suggest that additive genetic factors explain
about 60% of variance in the density measures (12, 13).
This raises the question of whether breast cancer suscep-
tibility variants identified to date are associated with
mammographic densitymeasures. This could lead to new
insights into the etiology of breast cancer by revealing the
biologic reasons for these associations with breast cancer
risk (14).
Five studies have examined the association of breast

cancer susceptibility SNPs with age- and BMI-adjusted
measures of mammographic density (14–18). The most
consistent finding was an association between (lympho-
cyte-specific protein-1, LSP-1)-rs3817198 and adjusted
dense area and percent density, in the same direction as

the association with breast cancer. The association was
observed overall by Odefrey and colleagues (17) but only
in specific subgroupsbyothers: inpremenopausalwomen
(14), current users of postmenopausal hormones (PMH;
ref. 15) or estrogen receptor (ER)þ/progesterone receptor
(PR)þ cases only (16). Other nominally significant
reported SNP–density associations consistent with the
association of these SNPs with breast cancer risk include
associations of TOX3-rs12443621 (14, 15) and rs4666451
(14) with adjusted percent density, in premenopausal
women only, and rs13281615 at 8q24 with both adjusted
percent density and dense area (17). The largest study to
date, a meta-analysis of 5 GWAS of mammographic den-
sity involving 4,877 women with and without breast
cancer, identified a genome-wide significant association
between ZNF365-rs10995190, a known breast cancer sus-
ceptibility SNP, and adjusted percent density as well as
weak evidence of possible associations with ESR1-
rs2046210 (P ¼ 0.005) and LSP1-rs3817198 (P ¼ 0.04;
ref. 18).

Only one previous study (17), however, examined
the SNP associations with the components that com-
prise the percent density phenotype, namely, dense
area and nondense area. Dense area has been hypoth-
esized to be the more relevant density phenotype for
understanding the etiology of mammographic density
(19), as tumors have been shown to arise within the
radiodense tissue (20). Whether these SNPs influence
dense and/or nondense area could help to interpret the
mechanism by which the loci influence density and
possibly cancer.

Density Twins and Sisters Study (AMDTSS); 43Bavarian Breast Cancer
Cases and Controls (BBCC); 44Determinants of Mammographic Density in
Spain (DDM-Spain); 45EPIC-NL (Dutch part of European Prospective Inves-
tigation into Cancer Nutrition; EPIC-NL); 46European Prospective Investiga-
tion into Cancer–Norfolk I and II (EPIC-Norfolk I and II); 47Women's Learning
the InfluenceofFamilyandEnvironmentStudy (LIFE); 48MagneticResonance
Imaging in Breast Screening (MARIBS); 49Mayo Clinic Breast Cancer Study
(MCBCS); 50Melbourne Collaborative Cohort Study (MCCS); 51Multiethnic
Cohort Study (MEC); 52Mammography, Oestrogens and Growth Factors
Study (MOG); 53Norwegian Breast Cancer Study (NBCS); 54Nurses' Health
Study (NHS); 55Ontario Familial Breast Cancer Registry (OFBCR); 56Polish
Breast Cancer Study (PBCS); 57Polish Nurses and Midwives Study (PNS);
58Singapore and Sweden Breast Cancer Study (SASBAC); and 59Sisters in
Breast Cancer Screening (SIBS)

Note: Supplementary data for this article are available at Cancer Epidemi-
ology, Biomarkers & Prevention Online (http://cebp.aacrjournals.org/).

Corresponding Authors: Celine M. Vachon, Department of Health
Sciences Research, Mayo Clinic, Rochester, MN 55905. Phone: 507-
284-9977; Fax: 507-266-2478; E-mail: vachon@mayo.edu; and Isabel
dos-Santos-Silva, Faculty of Epidemiology and Population Health,
London School of Hygiene and Tropical Medicine, Keppel Street,
London, United Kingdom. Phone: 44-020-7927-2113; Fax: 44-020-
7436-4230; E-mail: isabel.silva@lshtm.ac.uk

doi: 10.1158/1055-9965.EPI-12-0066

�2012 American Association for Cancer Research.

Common Breast Cancer Susceptibility Variants and Mammographic Density

www.aacrjournals.org Cancer Epidemiol Biomarkers Prev; 21(7) July 2012 1157

on January 6, 2017. © 2012 American Association for Cancer Research. cebp.aacrjournals.org Downloaded from 

Published OnlineFirst March 27, 2012; DOI: 10.1158/1055-9965.EPI-12-0066 

http://cebp.aacrjournals.org/


We established an international collaboration–the
DENSNP consortium-–of studieswithdata on established
breast cancer susceptibility variants and quantitative den-
sity measures from film mammography to conduct anal-
yses of breast cancer susceptibility SNPs in relation to the 3
density phenotypes. This article reports the findings for 15
breast cancer SNPs at 14 loci, identified through 2009
when the DENSNP consortium was established.

Materials and Methods
Study samples

The DENSNP consortium comprises 19 studies from
Europe, North America, and Australia with the present
analyses restricted to Caucasian women. Individual
studies, their design, and sample sizes are described in
Supplementary Table S1. Covariate data, including age,
reproductive variables, and exogenous hormone use,
were obtained through self-administered postal ques-
tionnaires (12 studies), in-person interviews (6 studies),
or telephone interviews (one study; Supplementary
Table S2). Participants’ weights, heights, and hence
BMIs were measured by trained staff (10 studies) and
self-reported (9 studies). For 8 studies, there was an
average of 6 months or less betweenmammography and
collection of participant information; for 18 studies, the
average was 3 years or less.

Each study obtained informed consent and relevant
ethics and institutional approvals. Only anonymized data
were made available to the DENSNP consortium.

Digitization and density measures
All studies obtained film mammograms–either the

mediolateral oblique (MLO; 7 studies) or craniocaudal
(CC; 12 studies) views–for participants, including breast
cancer cases and/or noncases, except PNS which digi-
tized copies of digital mammograms (Supplementary
Table S3). For cases, the film from the unaffected contra-
lateral breast taken at the time of cancer diagnosis was
used, except for 3 nested case–control studies for which
images obtained before diagnosis were used (2 studies
used average measurements of both breasts; 1 study
used only the right breast). For noncases, both breasts
(averaged), left or right only, or the side that corresponded
to the matched case was chosen.

As a requirement for entry, participating studies con-
tributed percent density, dense area, and nondense area
measures for cases and/or noncases using 1 of 2 similar
semiautomated methods that rely on the interactive
threshold technique, Cumulus (21) andMadena (22) soft-
wares. Both require an interactive selection of 2 grayscale
thresholds in the image of a digitized mammogram by a
trained observer. One threshold separates the breast from
the background and the other classifies the breast tissue
into dense and nondense areas, from which percent den-
sity (100 � dense area/total breast area) and absolute
measures of dense and nondense areas are automatically
generated. Images were anonymized and readers were

blind to the genotype, case status (if applicable), and risk
factor data.

Genotyping and quality control
SNPs confirmed to be associated with breast cancer

susceptibility in the 14 regions (loci) of the genes FGFR2,
LSP1, MAP3K1, TOX3, SLC4A7/NEK10, COX11, CASP8,
TGFB1, RAD51L1, ESR1, and MRPS30/FGF10, and posi-
tions 8q24.21, 2q35 and 1p11.2 were measured (Fig. 1).
These loci were identified by GWAS (4–7) except CASP8
and TGFB1 which were identified using the candidate
gene approach (8). For the CASP8 locus, there were alter-
nate SNPs (rs1045485 and rs17468277) available in strong
linkage disequilibrium (LD; r2¼ 0.98). The rs1045485 SNP
was used if available; if not, rs17468277 was used. For the
2,275 women with genotypes for both SNPs, these were
concordant for all but 9 samples, so were used inter-
changeably. Two SNPs were also available for each of
the RAD51L1 (rs10483813 and rs999737) and MRPS30/
FGF10 (rs4415048 and rs10941679) loci. The SNPs in
MRPS30/FGF10 were not in strong disequilibrium (r2 <
0.6 in our data set) and are reported separately.
Rs10483813 and rs999737 (RAD51L1) were in high LD
(r2¼ 0.98 in ourdata set), but studies had either genotyped
both SNPs, or only rs10483813; thus,weonly report results
for rs10483813 for which we had a larger sample size.

Genotypingwas conducted on various platforms by the
individual studies (Supplementary Table S4). Quality
control was conducted at the study level; all SNP
call rates were >90%, with few (10 SNPs from 5 studies)
<95%. Three SNPs (from 3 studies) withHardy–Weinberg
equilibrium P values <0.001 were excluded. The number
of SNPs genotyped by each study varied from all 14
(4 studies) to only 2 (2 studies), with a median of 10 per
study.

Statistical methods
Study-specific data were checked to ensure that the

coding and scaling of each variable were similar across
studies. For the AMTDSS, one twin was selected at ran-
dom from the 563 monozygous pairs. Examination of the
distributions of residuals of density phenotypes adjusted
for age, BMI, andmenopausal status showed that a square
root transformation of all density variables gave a good
approximation to a normal distribution and this was used
in all analyses.

A test of the null hypothesis of no association between
any of the tested SNPs and a given mammographic
measure was conducted using Fisher’s method (23). As
individual-level data were available from all studies,
primary analyses used a mixed model approach that
included per-study random-effects to capture study-spe-
cific differences. When applicable, a repeated measures
adjustment within families assuming a compound sym-
metry correlation structure was used to account for famil-
ial correlation. Models were adjusted for the fixed-effects
of age (continuous), BMI (1/BMI, was used as it provided
a better fit), case status, and menopausal status (pre- and
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perimenopausal combined vs. postmenopausal, with the
latter defined as nomenstruation for�12months, not due
to pregnancy). A missing category was included, when
applicable. Primary analyses considered SNP associa-
tions as additive genetic effects, by defining an ordinal
covariate as the number of copies of the minor allele
carried by the study subjects and fitted a linear associ-
ation. The resulting estimate of the per-allele effect is
reported as the "additive estimate" in the tables. Esti-
mates of the adjusted mean mammographic density
measures and their 95% confidence intervals (CI), cor-

responding to the observed genotypes of each variant,
were derived by back-transformation from the square
root to the original scale. Additional analyses were
conducted within subsets of women defined by meno-
pause categories (pre- and perimenopausal combined
vs. postmenopausal), BMI (< vs.�median of 25 kg/m2),
PMH (ever vs. never use), and case status to assess
whether SNP–density phenotype associations were
modified by these variables.

Between-study heterogeneity was tested by fitting
study-by-genotype interactions.

Figure 1. Associations of common breast cancer susceptibility variants with adjusted percent mammographic density, dense area, and nondense area.
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Analyses were conducted using SAS version 9.2 (SAS
Institute, Inc.). Two-sided P values were calculated. A
Bonferroni adjustment to account formultiple testingwas
applied to define the threshold for statistical significance
as P � 0.003 (¼ 0.05 divided by14 loci).

Results
There were 5,110 breast cancer cases and 11,785 non-

cases of self-reportedCaucasian race/ethnicitywith avail-
able density phenotypes, risk factors, and at least 1 of the
15 SNPs considered (Table 1). The number of participants
varied by SNP with the most comprehensive information
for 2q35 (n¼ 13,254), CASP8 (n¼ 12,816), and FGFR2 (n¼
12,680), and least information for TGFB1 (n ¼ 3,099),
RAD51L1 (n ¼ 7,610) and ESR1 (n ¼ 8,274).

The majority of the participants were aged �40 years
(98%) and postmenopausal (77%), and approximately
half of those aged �55 reported ever using PMH
(48%; Table 1). In all, 44% of participants had a BMI <
25 kg/m2 (Table 1). A small proportion was nulliparous
(11%), precluding subgroup analyses by parity. The asso-
ciations between these variables and the 3 density phe-
notypes are shown in Table 2 and were similar to those
reported in the literature.

The results from our primary analyses of the 15 SNPs in
14 breast cancer loci with the 3 density phenotypes are
shown in Fig. 1 and described in Supplementary Tables
S5a–S5c. Pictured are the parameter estimates from the
mixed linear models corresponding to each genotype.
There was strong evidence against the null hypothesis
that none of the SNPswere associatedwith the dense area
(P < 0.001) and percent density measures (P ¼ 0.001), but
not with the nondense area measure (P ¼ 0.5). This
suggests that at least 1 of the 14 breast loci is associated
with the density or dense area measures.

The strongest associations were seen with rs3817198
(LSP1) and the dense area (P ¼ 0.00005) and percent
density (P ¼ 0.001) phenotypes with little evidence for
between-study heterogeneity (Fig. 2). The adjusted mean
dense area was 23.7 cm2 for T/T carriers, 25.1cm2 for T/C
carriers, and 26.0 cm2 for C/C carriers (Supplementary
Tables S5a and S5b). The adjusted mean percent density
for T/T carriers was 19.4% compared with 20.1% for T/C
and 20.5% for C/C carriers, respectively. These associa-
tions were consistent across studies (Fig. 2) and persisted
after exclusion of studies that had previously reported on
LSP1 and density, namely NHS, AMDTSS, LIFE, MEC,
EPIC-Norfolk I, and SASBAC (refs. 14–18; e.g., P ¼ 0.004
for dense area). There was also evidence of an inverse
association between rs10483813 (RAD51L1) and adjusted
percent density (P ¼ 0.003), but not with adjusted dense
area (P ¼ 0.07; Fig. 1). These associations were consistent
across studies (Fig. 2) with the adjusted mean percent
density for T/T genotype being 21.1%, compared with
20.5% for T/A and 19.0% for A/A.

There were nominal associations of adjusted percent
density anddense areawith rs2046210 (ESR1), rs1045485/

rs17468277 (CASP8), rs4973768 (SLC4A7/NEK10), and
rs3803662 (TOX3; Supplementary Tables S5a and S5b)
which were in the direction of the published correspond-
ing breast cancer associations but not statistically signif-
icant after taking into account multiple testing (Fig. 1).
None of the investigated SNPs were associated with
nondense area (Fig. 1; Supplementary Table S5c).

The genetic associations above did not diminish after
further adjustment for parity or view (data not shown)
and, in general, did not appear to differ by case status,
BMI, menopausal status, or PMH use (Supplementary
Tables S6a–S6c) but the study had low power to examine
interactions.

We also examined the association of these SNPs with
breast cancer risk before and after adjustment for the
density measures by pooling data from studies that
recruited both cases and noncases (identified in Supple-
mentary Table S1). Using 3,175 cases and 6,504 noncases
from 8 studies, the per C-allele OR for rs3817198 (LSP1)
was 1.04 (95%CI, 0.97–1.12) without adjustment for either
density measure. When including dense area as a covar-
iate, the ORwas 1.03 (95% CI, 0.96–1.10), and after adjust-
ment for percent density instead, theORwas 1.02 (95%CI,
0.95–1.11). Similarly, using 2,765 cases and 3,022 noncases
from 4 studies, the per A-allele OR for rs10483813
(RAD51L1) was 0.92 (95% CI, 0.84–1.00) without adjust-
ment for either density measure, 0.93 (95% CI, 0.85–1.01)
after adjustment for dense area, and 0.94 (95% CI, 0.86–
1.03) after adjustment for percent density.

Discussion
There is wide interindividual variability in mammo-

graphic density measures, but known epidemiologic
risk factors account for only 20% to 30% variability in
percent density (13, 24, 25). We hypothesized that com-
mon low-penetrance breast cancer susceptibility var-
iants contribute to the remaining interindividual differ-
ences in the density phenotypes and examined this
within a large international consortium (DENSNP).
Here, we report the first findings from this collaborative
effort and identify associations between adjusted mea-
sures of density and 2 breast cancer susceptibility SNPs,
rs3817198 (LSP1) and rs10483813 (RAD51L1), which
were in the same direction as the corresponding SNP
associations with cancer risk.

The most marked association with density was with
rs3817198 (LSP1). We also confirmed this association
using the 10 studies that had not previously published
on the LSP1 variant and density association, providing
consistent evidence for thismammographic density locus.
The mechanisms through which this SNP (or more likely
the causal allele(s) it tags) may affect density and cancer
risk are unclear. The LSP1 gene encodes an intracellular F-
actin–binding protein, which is expressed in lympho-
cytes, neutrophils, and endothelium and might regulate
neutrophil motility, adhesion to fibrinogen matrix pro-
teins, and transendothelial migration (26).
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The SNP rs10483813 in RAD51L1, a gene on chromo-
some 14q24.1 involved in the double-strand DNA repair
and homologous recombination pathway, may also be
associated with the adjusted density measures, although
the evidence is less compelling than for rs3817198 (LSP1).

The biologic mechanisms underlying the possible associ-
ation of this variant with density and cancer risk are
unknown. RAD51L1 interacts with RAD51, and a SNP in
the 50 untranslated region of RAD51 has been found to be
associated with breast cancer risk for BRCA2 mutation

Table 1. Summary characteristics of the 19 DENSNP studies

BC cases Noncases Overall

Characteristic Category No. of studies N (%) N (%) N (%)

Overall 19 5,110 (30) 11,785 (70) 16,895 (100)
Study design Cohort 3 16 (0.3) 1,582 (13) 1,598 (9)

Cross-sectional 5 38 (1) 3,064 (26) 3,102 (18)
Case–control 5 3,280 (64) 2,217 (19) 5,497 (33)
Nested case–control 3 1,599 (31) 2,099 (18) 3,698 (22)
Family-based 3 177 (3) 2,823 (24) 3,000 (18)

Source of demographic
and reproductive data

In-person interview 6 1,631 (32) 1,276 (11) 2,907 (17)

Postal questionnaire 12 3,378 (66) 8,831 (75) 12,209 (72)
Telephone interview 1 101 (2) 1,678 (14) 1,779 (11)

Age,a y <40 9 221 (4) 145 (1) 366 (2)
40–49 17 937 (18) 1,857 (16) 2,794 (17)
50–59 18 1,643 (32) 4,843 (41) 6,486 (38)
60–69 16 1,659 (32) 4,011 (34) 5,670 (34)
�70 13 650 (13) 929 (8) 1,579 (9)

Paritya Nulliparous 19 614 (12) 1,167 (10) 1,781 (11)
Parous 19 4,329 (85) 10,479 (89) 14,808 (88)
Unknown 8 167 (3) 139 (1) 306 (2)

Menopausal statusa Premenopausal 16 1,185 (23) 2,241 (19) 3,426 (20)
Perimenopausal 5 13 (0.2) 251 (2) 264 (2)
Postmenopausal 18 3,769 (74) 9,195 (78) 12,694 (77)
Unknown 6 143 (3) 98 (1) 241 (1)

PMH use (at age �55) Ever 16 1,703 (53) 3,364 (46) 5,067 (48)
Never 16 1,326 (41) 3,474 (47) 4,800 (45)
Unknown 8 178 (6) 537 (7) 715 (7)

Source of
anthropometric data

Self-reported 9 3,784 (74) 5,909 (50) 9,693 (57)

Measurements by trained staff 10 1,326 (26) 5,876 (50) 7,202 (43)
BMI,a kg/m2 <25 19 2,284 (45) 5,071 (43) 7,355 (44)

� 25 19 2,737 (54) 6,597 (56) 9,334 (55)
Unknown 10 89 (2) 117 (1) 206 (1)

Average time interval
between mammography
and data collection (months),b

�6 8 2,129 (42) 4,330 (37) 6,459 (38)

>6 11 2,981 (58) 7,455 (63) 10,436 (62)
Mammographic side, view L–CC 8 831 (16) 2,547 (22) 3,378 (20)

R–CC 6 949 (19) 1,830 (16) 2,779 (16)
LR average–CC 3 2,402 (47) 2,285 (19) 4,687 (28)
L–MLO 3 465 (9) 1,978 (17) 2,443 (14)
R–MLO 1 447 (9) 418 (4) 865 (5)
LR average–MLO 4 16 (0.3) 2,727 (23) 2,743 (16)

Density reading software Cumulus 15 3,814 (75) 10,213 (87) 14,027 (83)
Madena 4 1,296 (25) 1,572 (13) 2,868 (17)

Abbreviations: BC, breast cancer; CC, craniocaudal; L, left; MLO, mediolateral oblique; R, right.
aAt time of mammography and/or data collection.
bAverage time interval for each study given in Supplementary Table S2 (range, 0–5 years).
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carriers (27). However, mutations in BRCA1 and BRCA2
have not been found to be associated with the density
phenotypes (28, 29).

Several breast cancer GWAS have consistently identi-
fied polymorphisms in intron 2 of fibroblast growth factor
receptor 2 (FGFR2), with each copy of the T-allele of
rs2981582 being associated with about a 26% increased
breast cancer risk (30). Our study had 90%power to detect
an average difference in percent density of less than 1%
betweenhomozygote carriers andnoncarriers of this SNP,
if such a difference truly exists, and therefore the lack of
finding an association suggests that density is unlikely to
mediate the association between FGFR2 and breast cancer

risk. Similar considerations apply to SNPs in several other
breast cancer loci, including TOX3-rs3803662, 2q35-
rs13387042 and MAP3K1-rs889312. These loci are likely
to contribute independently of density to risk prediction.
In fact, when we added LSP1-rs3817198 and RAD51L1-
rs10483813 to a risk model with age, BMI, menopause,
study, and percent density, the inclusion of these 2 SNPS
did not affect the area under the curve whereas the
addition of the remaining 12 SNPs increased the area
under the curve from 0.62 to 0.65 (P < 0.001).

Previous studies were based on smaller sample sizes
[ranging from 578 (ref. 16) to 4,877 (ref. 18)], which could
have precluded the detection of small effects. Our study is

Table 2. Mammographic density measurements by known breast cancer risk factors, mammographic
view, and case status at time of mammography

Risk factor N (%) PD (%) Dense area, cm2 Nondense area, cm2

Categories Mean (95% CI) Mean (95% CI) Mean (95% CI)

Age,a y
<40 366 (2.2) 34.2 (30.3–38.3) 36.8 (31.9–42.1) 75.1 (66.8–83.8)
40–49 2,794 (16.5) 28.2 (25.3–31.4) 33.0 (29.1–37.1) 89.7 (82.9–96.8)
50–59 6,486 (38.4) 20.3 (17.9–22.9) 26.4 (23.0–30.0) 112.2 (104.8–119.8)
60–69 5,670 (33.6) 14.9 (12.8–17.2) 21.3 (18.2–24.6) 130.2 (122.2–138.4)
�70 1,579 (9.3) 13.0 (11.0–15.2) 17.3 (14.5–20.4) 143.0 (134.1–152.3)
P <0.001 <0.001 <0.001

BMI,b kg/m2

<25 7,355 (44.1) 25.8 (23.2–28.6) 27.0 (23.6–30.7) 82.9 (77.1–89.0)
�25 9,334 (55.9) 14.8 (12.8–16.9) 23.3 (20.1–26.7) 144.3 (136.6–152.3)
P <0.001 <0.001 <0.001

Menopausal statusc

Pre- or perimenopausal 3,690 (22.2) 21.5 (19.1–24.1) 27.1 (23.6–30.8) 113.5 (106.4–120.9)
Postmenopausal 12,964 (77.8) 18.4 (16.2–20.7) 24.1 (20.9–27.5) 116.3 (109.3–123.5)
P <0.001 <0.001 0.05

PMH use (at ages � 55)c

Never 4,800 (48.6) 14.6 (12.5–16.9) 20.2 (16.7–23.9) 129.1 (120.4–138.2)
Ever 5,067 (51.4) 17.8 (15.5–20.4) 23.6 (19.9–27.7) 122.7 (114.2–131.6)
P <0.001 <0.001 <0.001

Parityc

Nulliparous 1,781 (10.7) 22.6 (20.1–25.2) 29.0 (25.4–32.9) 109.2 (102.2–116.4)
Parous 14,808 (89.3) 18.7 (16.5–21.0) 24.3 (21.1–27.7) 116.7 (109.8–123.8)
P <0.001 <0.001 <0.001

Mammographic viewc

CC 6,051 (35.8) 17.7 (14.2–21.5) 25.1 (19.7–31.1) 122.4 (111.1–134.2)
MLO 10,844 (64.2) 20.1 (17.3–23.2) 24.8 (20.6–29.4) 111.5 (103.2–120.2)
P 0.3 0.9 0.1

Case statusd

BC case 4,530 (37.8) 24.5 (20.8–28.4) 30.0 (24.1–36.4) 108.2 (95.6–121.5)
Noncase 7,439 (62.2) 19.3 (16.0–22.8) 24.2 (19.0–30.1) 117.9 (104.9–131.7)
P <0.001 <0.001 <0.001

Abbreviations: BC, breast cancer; CC, craniocaudal; MLO, mediolateral oblique.
aAdjusted for study.
bAdjusted for study and age.
cAdjusted for study, age, and BMI.
dRestricted to 9 studies that recruited both cases and noncases and adjusted for study, age, and BMI.
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the largest conducted so farwith sample sizes greater than
6,000 for all but one SNP and greater than 10,000 for all but
5 SNPs. We hadmore than 90% power to detect per-allele
differences in adjusted percent density of 1% or less for all
but 3 SNPs (rs17468277, rs10483813, and rs4415084), and
even for these SNPs, we were similarly powered to detect
per-allele differences of less than 2%. However, limited
power precluded a more detailed examination of inter-
actions with BMI (e.g., differential SNP effects in BMI-
definedquartiles) andPMHuse (e.g., different SNPeffects
by type of PMH, recency of use). The study also had low
power to assess the mediation of the SNP and breast
cancer associations by density.
The mammographic density readings were conducted

indifferent sets of films (e.g., left, right, or both breasts; CC
or MLO views), but it is unlikely that this may have
substantially affected our findings because there is a high
correlation between a woman’s density measurements
taken from the various breast view combinations (31).
For cases, both prediagnostic films and films from the
unaffected breast at the time of diagnosis, but before
treatment, were used–-an approach used by others (10);
furthermore, our findings were not modified by case

status. One small study (PNS) used digitized copies of
digital mammograms, but its exclusion did not affect the
results shown here. Although mammographic density
readings were not standardized, all studies used a similar
interactive threshold approach and had very highwithin-
and between-observer repeatability (typically >90%;
ref. 32). Also, all analyses were adjusted for study hence
minimizing the impact of any between-study differences
on density measurements which would have likely
reduced our power to detect real associations. Reassur-
ingly, we were able to reproduce the well-established
influences of age, BMI, parity, menopausal status, and
PMH on density phenotypes within each one of the
participating studies as well as in joint analyses.

Our findings suggest that 2 of 14well-established breast
cancer loci may contribute to the large between-woman
differences in risk-predicting density phenotypes, consis-
tent with estimates of 5% to 10% genetic overlap between
this biomarker and breast cancer (33). The 2 common
variants inLSP1 andRAD51L1 explained 0.2% (combined,
0.1% for each) of the variance in adjusted percent density
anddense area, although the overall contribution could be
larger if the true causal variants are more strongly

Figure 2. Study-specific associations of LSP1-rs3817198 and RAD51L1-rs10483813 with adjusted percent mammographic density and dense area.
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associated with density than the tagging SNPs we exam-
ined here. At the individual level, these SNPs were asso-
ciatedwith a 0.6% absolute increase in percent density per
allele for LSP1 and 0.8% absolute decrease in percent
density per allele for RAD51L1. These magnitudes can be
compared with, for example, the change in density mea-
sures of 1% decrease per year of ageing (34), 2% increase
with use of PMH, and 2% decrease over the menopausal
transition (35). Our findings are consistent with the
hypothesis that mammographic density is likely a poly-
genic trait, influenced by many common low-penetrance
variants, and/or rarer variants with larger effects which
cannot be identified through current GWAS. Identifica-
tion of such variants, and clarification of their role and
function, is likely to improve our understanding of the
biology of mammographic density and how this pheno-
type is associated with breast cancer risk.
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