Null Results in Brief

Single-Nucleotide Polymorphisms in Aldo-Keto and Carbonyl Reductase Genes Are Not Associated with Acute Cardiotoxicity after Daunorubicin Chemotherapy

Joanna M. Lubieniecka1, Jie Liu5, Daniel Heffner2, Jinko Graham5, Ronald Reid1, Donna Hogge2,4, Tom A. Grigliatti3, and Wayne K. Riggs1

Abstract

Background: Evidence suggests that interpatient variability in anthracycline metabolic rate may contribute to the cardiotoxicity associated with anthracycline-based chemotherapy. Therefore, polymorphisms in the anthracycline metabolizing enzymes have been proposed as potential biomarkers of anthracycline-induced cardiotoxicity (AIC).

Methods: We have previously shown that 13 of the naturally occurring nonsynonymous single-nucleotide polymorphisms (nsSNP) in the ald-o-keto reductases (AKR) and carbonyl reductases (CBR) reduce anthracycline metabolic rate in vitro. Here, we test these SNPs individually and jointly for association with daunorubicin-induced cardiotoxicity in patients with acute myeloid leukemia (AML).

Results: Five of the 13 nsSNPs exhibiting an in vitro effect on anthracycline metabolism were detected among the 185 patients with AML. No association was found between the SNPs and daunorubicin-induced cardiotoxicity in either individual or joint effect analyses.

Conclusions: Despite the shown in vitro effect of nsSNPs in reductase genes on anthracycline metabolic rate, on their own these SNPs do not explain enough variability in cardiotoxicity to be useful markers of this adverse event.

Impact: The results of this study provide important information for biomarker studies on side effects of anthracycline chemotherapy. Cancer Epidemiol Biomarkers Prev; 21(11); 2118–20. ©2012 AACR.

Introduction

Anthracyclines are effective anticancer drugs; however, their use is limited by side effects including life-threatening cardiotoxicity. The large interpatient variability in sensitivity to anthracyclines correlates with the wide range of pharmacokinetic values reported for these drugs, which is largely a reflection of differences in the phase I conversion of anthracyclines to their metabolites catalyzed by the ald-o-keto reductases (AKR) and carbonyl reductases (CBR; ref. 1). A cardioprotective role for CBRs has been shown in mouse models (2, 3), and it has been proposed that polymorphisms in these genes are likely to affect anthracycline metabolic rates, and thus contribute to anthracycline-induced cardiotoxicity (AIC). We have previously shown that 13 of the naturally occurring nonsynonymous single-nucleotide polymorphisms (nsSNP) in the reductase genes have a significant effect on the metabolism of anthracyclines in vitro (4). Here, we evaluate these nsSNPs for their association with AIC in a population of patients with acute myeloid leukemia (AML) undergoing daunorubicin-based chemotherapy.

Material and Methods

Peripheral blood samples were obtained from 185 patients with AML after informed consent and with approval from the Clinical Research Ethics Board of the University of British Columbia (Vancouver, BC). All patients were Caucasian, an average age of 46 years old (range 14–74 years old), 99 females and 86 males. Patients received daunorubicin in combination with cytarabine for initial remission induction and subsequent consolidation therapy (daunorubicin average cumulative dose: 323 mg/m2; range: 60–780 mg/m2).

Cardiac function was monitored by left ventricular ejection fraction (LVEF) measurements pre- and postadministration of the treatment. Percentage drop in LVEF was used as a quantitative cardiac outcome after daunorubicin treatment. Patients received daunorubicin in combination with cytarabine for initial remission induction and subsequent consolidation therapy (daunorubicin average cumulative dose: 323 mg/m²; range: 60–780 mg/m²).

Cardiac function was monitored by left ventricular ejection fraction (LVEF) measurements pre- and postadministration of the treatment. Percentage drop in LVEF was used as a quantitative cardiac outcome after daunorubicin treatment. Patients received daunorubicin in combination with cytarabine for initial remission induction and subsequent consolidation therapy (daunorubicin average cumulative dose: 323 mg/m²; range: 60–780 mg/m²).

All patients were genotyped for 13 nsSNPs in 4 AKR and 2 CBR genes (Table 1) using the Sequenome genotyping system (Sequenome Inc.). As quality control, only SNPs...
with frequency more than 1%, in Hardy–Weinberg equilibrium, and with genotyping rate more than 95% were included in statistical analysis.

Initially, a base model for predicting LVEF% drop was built from the nongenetic variables (i.e., gender, age, and cumulative dose) using stepwise addition based on Akaike information criterion. Only the nongenetic variables predictive of the outcome were included in the genetic model.

The joint effect of all SNPs on LVEF% drop was assessed using a global test of association, and the individual effects of each SNP were assessed with standard likelihood ratio tests (5). All analyses were adjusted for gender and cumulative dose after applying a logarithmic transformation to stabilize the outcome variance.

All statistical analyses were conducted within the R software environment for statistical computing, using the GlobalTest package (6).

Results

Of the 13 nsSNPs included in the study, 5 passed the quality control filters and were used in statistical analysis (bolded SNPs in Table 1). Initial tests for association of nongenetic variables with percentage drop in LVEF identified only cumulative dose and gender to be predictive of LVEF drop. Therefore, all tests for the effect of the SNPs on the outcome were adjusted for cumulative dose and gender. The likelihood ratio tests for association of each SNP individually found no association for any of the 5 SNPs with LVEF drop (Table 2). Furthermore, no
association was found when all 5 SNPs were tested for joint effect ($P = 0.889$). Given that cumulative dose could potentially be a modifying variable, we also tested the effect of the SNPs individually and jointly including linear interaction terms with dose. These tests similarly did not detect any significant associations (Table 2; $P = 0.581$ for the global test of joint effect of 5 SNPs and 5 interactions of SNPs and dose).

Discussion

The aim of this study was to determine if any of the nsSNPs in reductase genes with a shown in vitro effect on anthracycline metabolism are associated with AIC in a population of patients with AML. Because serial measurements of LVEF are commonly used to monitor asymptomatic cardiotoxicity during anthracycline chemotherapy (1), we used the percentage drop in LVEF as a measure of acute cardiotoxicity. We found no association between the nsSNPs in reductase genes and AIC in either individual or joint effects models.

To the best of our knowledge of the SNPs investigated here, only rs1056892 (V244M) in CBR3 has been previously tested for association with AIC, and was found to be associated in survivors of childhood cancers by Blanco and colleagues but not by Visscher and colleagues (7, 8). Similar to Visscher and colleagues, we did not find an association between the SNP and AIC in a population of adult patients with AML. However, our study differs from previous studies in that it is looking at acute and not chronic cardiotoxicity in adult population.

In summary, despite their shown in vitro effect on anthracycline metabolism, the nsSNPs in reductase genes were not associated with daunorubicin-induced cardiotoxicity. However, given that AIC is a complex phenotype, it is possible that these variants may improve predictive power of polygenic models in the future.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors' Contributions

Conception and design: J.M. Lubieniecka, R. Reid, T.A. Grigliatti
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): D. Heffner, D. Hogge, T.A. Grigliatti, W.K. Riggs
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J.M. Lubieniecka, J. Liu, J. Graham, T.A. Grigliatti
Writing, review, and/or revision of the manuscript: J.M. Lubieniecka, J. Graham, D. Hogge, T.A. Grigliatti, W.K. Riggs
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J.M. Lubieniecka, D. Heffner
Study supervision: T.A. Grigliatti, W.K. Riggs

Grant Support

The study was funded by Canadian Institutes for Health Research (Grant #21R4510).
Single-Nucleotide Polymorphisms in *Aldo-Keto* and *Carbonyl Reductase* Genes Are Not Associated with Acute Cardiotoxicity after Daunorubicin Chemotherapy

Joanna M. Lubieniecka, Jie Liu, Daniel Heffner, et al.

Updated version Access the most recent version of this article at: doi:10.1158/1055-9965.EPI-12-1037

Cited articles This article cites 7 articles, 6 of which you can access for free at: http://cebp.aacrjournals.org/content/21/11/2118.full.html#ref-list-1

Citing articles This article has been cited by 1 HighWire-hosted articles. Access the articles at: /content/21/11/2118.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.