Parity and Lactation in Relation to Estrogen Receptor Negative Breast Cancer in African American Women

Julie R. Palmer¹, Deborah A. Boggs¹, Lauren A. Wise¹, Christine B. Ambrosone², Lucile L. Adams-Campbell³, and Lynn Rosenberg¹

Abstract

Background: Estrogen receptor (ER)-negative breast tumors and progesterone receptor (PR)-negative breast tumors occur more commonly in women of African ancestry. Recent research indicates that the effects of reproductive factors may differ by hormone receptor status. We assessed the relation of parity and lactation to incidence of ER⁻/PR⁻ and ER⁺/PR⁺ breast cancer in a cohort of African American women.

Methods: From 1995–2009, 457 incident cases of ER⁺/PR⁺ and 318 cases of ER⁻/PR⁻ breast cancer were confirmed by review of pathology data among 59,000 African American women followed in the Black Women's Health Study through biennial questionnaires. HRs and two-sided 95% CIs for the incidence of breast cancer subtypes were derived from proportional hazards regression models that controlled for age, reproductive variables, and breast cancer risk factors.

Results: Higher parity was associated with an increased risk of ER⁻/PR⁻ breast cancer (HR = 1.48, 95% CI: 0.98–1.84 for 3+ versus 0 births, \(P_{\text{trend}} = 0.009 \)), and with a reduced risk of ER⁺/PR⁺ cancer (HR = 0.53, 95% CI: 0.39–0.73 for 3+ versus 0 births, \(P_{\text{trend}} = 0.0002 \)). Among women who had breastfed, high parity was no longer associated with increased incidence of ER⁻/PR⁻ breast, but the inverse association with ER⁺/PR⁺ cancer persisted.

Conclusions: The higher incidence of ER⁻/PR⁻ breast cancer in African American women may be explained in part by their higher parity and lower prevalence of breastfeeding relative to white women.

Impact: Increased breastfeeding may lead to a reduction in the incidence of this breast cancer subtype.

Cancer Epidemiol Biomarkers Prev; 20(9); 1883–91. ©2011 AACR.

Introduction

Tumors characterized by the lack of estrogen receptors (ER) and progesterone receptors (PR) are associated with an aggressive pathology and poor prognosis and occur in African American women more frequently than in white women at every age level (1–3). Numerous risk factors for ER⁺ breast cancer, many of them hormonal, have been identified, but the causal etiology of ER⁻ breast cancer is largely unexplained.

A dual effect of parity on overall breast cancer incidence is widely recognized. In the first years following a full-term pregnancy, and possibly extending for as long as 10 to 15 years, there is an increased risk of developing breast cancer (4–7). Possible contributors are pregnancy-related hormones (estrogens, progesterone, and insulin-like growth factor 1) that promote previously initiated cells, immune suppressive effects of pregnancy, and inflammatory effects of the postpartum involution process. After the 10- to 15-year period of increased risk of breast cancer, parous women subsequently have a reduced risk (8–11). This pattern holds for ER⁺ breast cancer (12–18), but full-term pregnancy may have a sustained adverse effect on risk of ER⁻ breast cancer (18–23).

We previously observed that high parity was associated with increased risk of breast cancer before age 45 and with a reduced risk at older ages in African American women (24). We now have sufficient data to investigate the effects of parity separately for ER⁻/PR⁻ and ER⁺/PR⁺ breast cancers.

Methods

Study population and data

The Black Women’s Health Study (BWHS) began in 1995 when 59,000 African American women aged 21 to 69 from across the United States completed mailed health questionnaires. Participants have completed follow-up questionnaires every 2 years. Over 80% of participants in the original cohort were successfully followed through...
the most recent completed questionnaire cycle. The Institutional Review Board of Boston University approved the protocol and reviews the study annually.

At baseline, participants were asked about the number of births, timing of each full-term birth, whether they had ever breastfed, and total duration of breastfeeding. They were also asked their height and weight, age at menarche, oral contraceptive use, breast cancer in first degree relatives, vigorous physical activity, alcohol consumption, menopausal status, age at menopause, supplemental female hormone use, and years of education. The biennial follow-up questionnaires ascertained occurrences of incident breast cancer and updated information on births, breastfeeding, oral contraceptive use, weight, vigorous physical activity, alcohol consumption, menopausal status, and supplemental female hormone use.

The present analyses are based on follow-up from 1995 through 2009. We excluded women who reported any cancer at baseline ($N = 1,476$), had missing data on number of births ($N = 124$), or missing data on age at first birth ($N = 374$). We identified 1,692 incident cases of breast cancer among the remaining participants and obtained pathology data from either medical records or cancer registries for 1,332 cases. The present analyses are based on the 922 incident breast cancer cases with known receptor status. The proportion of cases on which such data were available increased over the course of follow-up to more than 80% in the last completed cycle of follow-up as ascertainment of hormone receptor status became the standard of care in hospitals nationwide. The proportions with ER $^+$, ER $^+$PR $^+$, ER $^+$PR $^+$, and ER $^+$PR $^+$ tumors were 50%, 14%, 2%, and 34%, respectively, similar to the distributions observed for African American women in Surveillance, Epidemiology and End Results (SEER) registries and other population-based data (25–27). Information on HER2 expression was unavailable for most BWHS breast cancer cases. A comparison of the 922 cases with known receptor status to the 770 cases with unknown receptor status with regard to reproductive factors and other breast cancer risk factors indicated that the cases included in this analysis were similar to the excluded cases. Prevalences of parity of 2 or more, age at first birth or 25 years or more, years since last birth less than 10, and ever lactation for cases with known receptor status versus case with unknown status were, respectively, 40.6, 42.8, $P = 0.77$; 35.9, 35.1, $P = 0.17$; 35.2, 37.9, $P = 0.26$; and 42.6, 40.0, $P = 0.75$. Means for age, age at menarche, and body mass index were 45.3, 44.9, $P = 0.39$; 12.2, 12.2, $P = 0.47$; and 27.4, 27.6, $P = 0.67$, respectively, for included versus excluded cases.

Statistical analysis

Each participant contributed person-time from baseline in 1995 until diagnosis of breast cancer, death, loss to follow-up, or end of follow-up in 2009, whichever came first. We used Cox proportional hazards regression, stratified by age in 1-year intervals and questionnaire cycle, to estimate HRs and 95% CIs for breast cancer incidence, with adjustment for number of births, age at first birth, years since last birth, lactation, age at menarche (<12, 12–13, and ≥14 years), oral contraceptive use (never, <5, and ≥5 years), body mass index (<25, 25–29, and ≥30 kg/m2), family history of breast cancer, vigorous exercise (none, <5, and ≥5 hours/week), current alcohol consumption (<1, 1–6, and ≥7 drinks/week), age at menopause (premenopausal, <45, 45–49, and ≥50 years), and menopausal female hormone use (never, <5, and ≥5 years of use). Covariates were selected a priori based on having an established or suspected causal association with breast cancer incidence. Indicator terms were included for missing data. Covariates that changed over time were treated as time-dependent variables. Women who reported a hysterectomy but retained 1 or both ovaries were classified as premenopausal if their current age was less than the tenth percentile of age at natural menopause in the BWHS (<43 years), as postmenopausal if their age was greater than the 90th percentile of age at natural menopause in the cohort (>56 years), and as having unknown age at menopause if their age was 43 to 56 years. Educational status, which may be correlated with reproductive factors, was not independently associated with breast cancer incidence; HRs were the same with and without control for education.

To test for trend across categories of parity, age at first birth, and years since last birth, we numbered each category to create an ordinal term in the regression. Departures from the proportional hazards assumption (i.e., a constant HR across age and time) were tested by the likelihood ratio test comparing models with and without interaction terms for age and calendar time with the main exposure variables.

Results

As shown in Table 1, relative to women with only 1 birth, women with 2 or more births were older, more likely to have had their first birth before age 25 and to have breastfed, and had fewer years of oral contraceptive use and fewer years of education. Women with an early age at first birth were less likely to have breastfed and had fewer years of oral contraceptive use and fewer years of education than those with first birth at age 25 or later. The prevalence of ever lactation was lower in women with 12 years or less of education but was not associated with oral contraceptive use.

As shown in Table 2, higher parity was associated with an increased risk of ER $^+$PR $^+$ breast cancer ($HR = 1.48$, 95% CI: 0.98–1.84 for 3+ relative to 0 births; $P_{trend} = 0.009$) but with a reduced risk of ER $^+$PR $^+$ cancer ($HR = 0.53$, 95% CI: 0.39–0.73; $P_{trend} = 0.0002$) and ER $^+$PR $^+$ cancer ($HR = 0.62$, 95% CI: 0.35–1.11; $P_{trend} = 0.08$). Later age at first birth was associated with an increased risk of breast cancer for all subtypes examined, ER $^+$PR $^+$, ER $^+$PR $^+$, and ER $^+$PR $^+$ ($P_{trend} = 0.05, 0.18, 0.04$, respectively). Time since last birth was associated with both ER $^+$PR $^+$ and ER $^+$PR $^+$ breast cancer: the HRs for recent birth (<10 years since last birth)
relative to a birth at least 15 years previously were 1.69 (95% CI: 1.08–2.63) and 1.61 (0.97–2.68), respectively. There was no association of time since last birth with ER+/PR- subtype, but there were only 9 cases in the less than 10-year category. HRs for the association of breastfeeding with subtypes of breast cancer were 1.13 (95% CI: 0.91–1.42) for ER+/PR+, 1.25 (95% CI: 0.83–1.89) for ER+/PR-, and 0.78 (95% CI: 0.60–1.03) for ER+/PR- cancers. HRs were essentially the same for total duration of lactation of 1 to 5 months and total duration of 6 or more months.

We stratified the lactation analyses on family history of breast cancer. HRs for ever-lactation in relation to ER+/PR+ subtype, but there were only 9 cases in the less than 10-year category. HRs for ever-lactation in relation to ER+/PR- subtype, but there were only 9 exposed cases; 0.91, 95% CI: 0.68–1.22, based on 86 exposed cases; 0.33, 95% CI: 0.15–0.72, based on 9 exposed cases) but not among those without (HR = 0.91, 95% CI: 0.68–1.22, based on 86 exposed cases; data not shown).

The inverse association of high parity with ER+/PR+ breast cancer appeared stronger among the older women (ages 45–78), whereas the positive association with older age at first birth appeared stronger among the younger women (Table 3). For ER-/PR- cancer, the associations with parity, age at first birth, and years since last birth were all stronger among women under age 45. However, none of the tests for interaction by age were statistically significant.

Table 4 shows HRs for joint exposure categories of parity with age at first birth, time since last birth, and lactation relative to a reference category of nulliparity. Number of births seemed to be a more important risk factor for ER+/PR- breast cancer than age at first birth or recency of last birth: HRs for 2 or more births relative to nulliparity were significantly elevated regardless of timing of the first birth and regardless of recency of the last birth. The highest HR (2.20, 95% CI: 1.47–3.29) was for women who had their first birth at age 25 or later and had at least 2 births. For ER+/PR- breast cancer, age at first birth was a more important factor than parity: women who had their first birth before age 25 had a 30% to 40% reduced risk of ER+/PR+ breast cancer relative to nulliparous women, regardless of the number of births.

Among women who had never breastfed, having 2 or more births was associated with a 50% increase in risk of ER+/PR+ cancer (HR = 1.53, 95% CI: 1.09–2.23), whereas there was little increase in risk associated with parity of 2 or more births among those who had breastfed (HR = 1.16, 95% CI: 0.80–1.69; Table 4). To test the significance of this interaction by lactation, we estimated the HR for parity of 2 or more, no breastfeeding relative to a reference category of parity of 2 or more, ever breastfed; the HR was 1.32 (95% CI: 0.98–1.78). For ER+/PR- breast cancer, parous women had a decreased risk relative to nulliparous women regardless of whether or not they had breastfed.

Discussion

The present results suggest that higher parity is associated with an increased risk of ER+/PR- breast cancer, but that breastfeeding ameliorates this adverse effect.
Table 2. Reproductive factors in relation to breast cancer subtypes

<table>
<thead>
<tr>
<th>Number of births</th>
<th>ER+/PR+</th>
<th>ER+/PR−</th>
<th>ER−/PR−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases Person-years</td>
<td>HR 95% CI</td>
<td>Cases Person-years</td>
<td>HR 95% CI</td>
</tr>
<tr>
<td>0</td>
<td>110</td>
<td>212,629</td>
<td>1.00 Reference</td>
</tr>
<tr>
<td>1</td>
<td>112</td>
<td>161,964</td>
<td>0.77 0.56-1.04</td>
</tr>
<tr>
<td>2</td>
<td>136</td>
<td>171,818</td>
<td>0.76 0.57-1.01</td>
</tr>
<tr>
<td>≥3</td>
<td>99</td>
<td>144,765</td>
<td>0.53 0.39-0.73</td>
</tr>
<tr>
<td>P_trend</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age at first birth</th>
<th>ER+/PR+</th>
<th>ER+/PR−</th>
<th>ER−/PR−</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>103</td>
<td>150,943</td>
<td>1.00 Reference</td>
</tr>
<tr>
<td>20-24</td>
<td>106</td>
<td>162,425</td>
<td>0.90 0.68-1.19</td>
</tr>
<tr>
<td>25-29</td>
<td>80</td>
<td>100,093</td>
<td>1.23 0.90-1.68</td>
</tr>
<tr>
<td>≥30</td>
<td>58</td>
<td>65,086</td>
<td>1.34 0.93-1.94</td>
</tr>
<tr>
<td>P_trend</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Years since last birth</th>
<th>ER+/PR+</th>
<th>ER+/PR−</th>
<th>ER−/PR−</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥15</td>
<td>264</td>
<td>278,425</td>
<td>1.00 Reference</td>
</tr>
<tr>
<td>10-14</td>
<td>26</td>
<td>65,208</td>
<td>0.93 0.60-1.57</td>
</tr>
<tr>
<td><10</td>
<td>51</td>
<td>128,913</td>
<td>1.69 1.08-2.63</td>
</tr>
<tr>
<td>P_trend</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lactation, parous women only</th>
<th>ER+/PR+</th>
<th>ER+/PR−</th>
<th>ER−/PR−</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>192</td>
<td>269,725</td>
<td>1.00 Reference</td>
</tr>
<tr>
<td>Yes</td>
<td>151</td>
<td>203,135</td>
<td>1.13 0.91-1.42</td>
</tr>
<tr>
<td><6 mo</td>
<td>85</td>
<td>112,008</td>
<td>1.11 0.86-1.44</td>
</tr>
<tr>
<td>≥6 mo</td>
<td>66</td>
<td>91,127</td>
<td>1.17 0.87-1.57</td>
</tr>
</tbody>
</table>

P_trend = 0.0002, 0.08, 0.009

NOTE: HRs were derived from models that adjusted for age, time, geographic region, age at menarche, age at menopause, use of menopausal hormone supplements, use of oral contraceptives, body mass index, physical activity, alcohol intake, cigarette smoking, family history of breast cancer, and each of the other reproductive factors.

*18 breast cancer cases were classified as ER+/PR− and were omitted from this table.
Table 3. Reproductive factors in relation to ER\(\pm\)/PR\(\pm\) and ER\(\pm\)/PR\(\pm\) breast cancer by age

<table>
<thead>
<tr>
<th>Number of births</th>
<th>Age <45 Cases</th>
<th>HR (95% CI)</th>
<th>Age ≥45 Cases</th>
<th>HR (95% CI)</th>
<th>P(_{\text{trend}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>1.00 (Reference)</td>
<td>79</td>
<td>1.00 (Reference)</td>
<td>0.32</td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>0.90 (0.47–1.71)</td>
<td>76</td>
<td>0.68 (0.48–0.98)</td>
<td><0.0001</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>0.71 (0.37–1.39)</td>
<td>111</td>
<td>0.73 (0.53–1.01)</td>
<td>0.02</td>
</tr>
<tr>
<td>≥3</td>
<td>14</td>
<td>0.76 (0.36–1.59)</td>
<td>85</td>
<td>0.47 (0.33–0.66)</td>
<td>0.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age at first birth</th>
<th>Age <45 Cases</th>
<th>HR (95% CI)</th>
<th>Age ≥45 Cases</th>
<th>HR (95% CI)</th>
<th>P(_{\text{trend}})</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>16</td>
<td>1.00 (Reference)</td>
<td>87</td>
<td>1.00 (Reference)</td>
<td>0.04</td>
</tr>
<tr>
<td>20–24</td>
<td>13</td>
<td>0.69 (0.33–1.46)</td>
<td>93</td>
<td>0.93 (0.69–1.26)</td>
<td>0.31</td>
</tr>
<tr>
<td>25–29</td>
<td>20</td>
<td>1.23 (0.61–2.49)</td>
<td>60</td>
<td>1.22 (0.86–1.73)</td>
<td>0.03</td>
</tr>
<tr>
<td>≥30</td>
<td>26</td>
<td>1.75 (0.85–3.61)</td>
<td>32</td>
<td>1.14 (0.73–1.79)</td>
<td>0.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Years since last birth</th>
<th>Age <45 Cases</th>
<th>HR (95% CI)</th>
<th>Age ≥45 Cases</th>
<th>HR (95% CI)</th>
<th>P(_{\text{trend}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥15</td>
<td>20</td>
<td>1.00 (Reference)</td>
<td>244</td>
<td>1.00 (Reference)</td>
<td>0.08</td>
</tr>
<tr>
<td>10–14</td>
<td>11</td>
<td>0.71 (0.33–1.51)</td>
<td>15</td>
<td>1.15 (0.65–2.03)</td>
<td>0.23</td>
</tr>
<tr>
<td><10</td>
<td>43</td>
<td>1.61 (0.88–2.95)</td>
<td>8</td>
<td>1.51 (0.71–2.32)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ever breastfed</th>
<th>Age <45 Cases</th>
<th>HR (95% CI)</th>
<th>Age ≥45 Cases</th>
<th>HR (95% CI)</th>
<th>P(_{\text{trend}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>32</td>
<td>1.00 (Reference)</td>
<td>160</td>
<td>1.00 (Reference)</td>
<td>0.66</td>
</tr>
<tr>
<td>Yes</td>
<td>43</td>
<td>1.30 (0.80–2.12)</td>
<td>108</td>
<td>1.10 (0.85–1.42)</td>
<td>0.78</td>
</tr>
</tbody>
</table>

NOTE: HRs were derived from models that adjusted for age, time, geographic region, age at menarche, age at menopause, use of menopausal hormone supplements, use of oral contraceptives, body mass index, physical activity, alcohol intake, cigarette smoking, family history of breast cancer, and each of the other reproductive factors.
studies of ER– breast cancer indicate either no association
cancer has been consistently found (12–15, 18), whereas
occurs more frequently in African Americans than in

negative association of parity with ER –/PR–/HER2–
triple-negative subtype (21), and the other found a similar
association. The basal-like subtype char-

acterized by ER–, PR–, HER2–, HER1+

other ethnic groups and carries a poorer prognosis (3). In a case–control study from Poland, high parity was
associated with an increased risk of basal-like breast
cancer and a reduced risk of luminal A breast cancer
(ER+ and/or PR+, HER2–; 23). In the Carolina Breast
Cancer Study, high parity was also positively associated
with basal-like breast cancer and inversely associated
with luminal A cancer (19).

The limited data from previous studies regarding the
association of both lactation and parity with incidence of
the ER− subtype are generally consistent with our find-

ings. In the Carolina Breast Cancer Study (19), breastfeed-
ing was associated with a reduced risk of basal-like but
not luminal A subtype. In addition, the increased risk
associated with parity was present only among women
who had never breastfed; among women who had

breastfed, there was essentially no association of parity
with risk of basal-like breast cancer. The 2 case-only
studies described above both observed a reduced risk of
triple-negative breast cancer associated with lactation
(20, 21), and, in one, the positive association of parity
with triple-negative breast cancer was present only among
women who had never breastfed (20).

Why might full-term pregnancy, in the absence of
breastfeeding, lead to an increased risk of ER+ breast
cancer? Schedin and colleagues hypothesized that the
advantage effect of pregnancy may relate to immune sys-

tem/inflammatory processes that occur during postpar-
tum involution (30–32). Involution involves processes of

| Number of births | ER+/PR+ | | | ER+/PR− | | |
|------------------|---------|-------|-------|---------|-------|
| Age at first birth | HR 95% CI | HR 95% CI |
| 1 1 Ever | 38 | 0.75 | (0.50–1.14) | 44 | 1.00 | (0.65–1.52) |
| 1 2 Ever | 119 | 0.64 | (0.48–0.85) | 118 | 1.53 | (1.09–2.23) |
| 2 2 Ever | 113 | 0.73 | (0.54–0.97) | 75 | 1.16 | (0.80–1.69) |

Cases HR 95% CI Cases HR 95% CI

Table 4. Joint effects of parity and other reproductive variables on risk of ER+/PR+ and ER+/PR− breast cancer

NOTE: HRs were derived from models that adjusted for age, time, geographic region, age at menarche, age at menopause, use of menopausal hormone supplements, use of oral contraceptives, body mass index, physical activity, alcohol intake, cigarette smoking, family history of breast cancer, and each of the other reproductive factors.

Analyses stratified by time last since birth indicated that the association is not accounted for by the transient increase in risk in the period immediately following a full-term pregnancy. Results for parity and lactation in relation to ER+/PR+ subtype were strikingly different. Higher parity was associated with a reduced risk of ER+/PR+ breast cancer, and breastfeeding did not alter this association.

An inverse association of parity with risk of ER− breast cancer has been consistently found (12–15, 18), whereas studies of ER− breast cancer indicate either no association (12–15) or a positive association (18, 19, 22, 23). Among studies that also considered HER2 status, one found higher parity to be strongly associated with increased risk of both ER+/PR+ HER2+ ("triple negative") cancer and ER+/PR+/HER2+ cancer (22), one found high parity to be associated with increased risk of triple-negative breast cancer only (18), and 2 studies were null (16, 28). In 2 case–case analyses that compared the triple-negative breast cancer subtype with ER+/PR+ subtype, one found a strong positive association of parity with the triple-negative subtype (21), and the other found a similar positive association of parity with ER+/PR+/HER2+ tumors (20). Results of studies of “intrinsic” breast cancer subtypes (19, 23, 29) as characterized by immunohistochemistry of several additional molecular markers also support these associations. The basal-like subtype char-

cterized by ER+, PR+, HER2+, HER1+, and/or CK5/6 occurs more frequently in African Americans than in
from the Nurses’ Health Study II (36), which showed that differences by duration of breastfeeding was limited to associations with the ER– subtype. Our ability to assess associations with reproductive factors and other breast cancer risk factors were closely similar with regard to reproductive factors and other breast cancer risk factors, mitigating concern about selection bias. We were unable to assess subtypes according to HER2 expression, but previous studies suggest that HER2 status does not modify associations with the ER+ subtype. Our ability to assess associations by duration of breastfeeding was limited because most participants who had breastfed had done so for less than 12 months total.

In summary, the present findings suggest that higher parity is associated with an increased risk of ER+/PR+ breast cancer in African American women. Because African American women have had more births on average than U.S. white women (44), this association may explain, in part, why incidence of ER+/PR+ breast cancer is higher in African American than white women who had a first degree family history of breast cancer. This finding is consistent with a recent report on the association of parity in the absence of pregnancy and postpartum wound healing (35). Under these postulated mechanisms, lactation could have a protective effect on all subtypes of breast cancer. We did not, however, observe an association of lactation with risk of ER+/PR+ breast cancer; it is possible that the beneficial effects of lactation on involution may be less important for hormone-positive breast cancer where hormonal influences have a dominant role.

In our analyses of ER+ breast cancer, the inverse association with lactation was stronger in the group of women who had a first degree family history of breast cancer. This finding is consistent with a recent report from the Nurses’ Health Study II (36), which showed that among young women with a family history of breast cancer, those who had breastfed or used lactation suppression medications had a reduced risk of breast cancer compared with women who neither breastfed nor used such medications. The authors hypothesized that both lactation and use of lactation suppression medications could reduce breast cancer risk by preventing disordered involution.

Differences in inflammatory profiles between women of African ancestry and other women may be relevant to our finding of an association of parity in the absence of lactation with risk of ER+ breast cancer in African American women. Several markers of inflammation, including C-reactive protein, serum amyloid, and interleukin-6, are elevated in African Americans (37–41). A robust immune system has an evolutionary advantage for populations living in sub-Saharan Africa where there has been endemic infectious disease. Genetic profiles have developed over millennia to adapt to these conditions. Although these characteristics are advantageous for women living in Africa, the very strong immune response may be disadvantageous in other situations and could lead to an increased risk of aggressive breast tumors following pregnancy without lactation, because of the inflammatory processes accompanying involution. There have been several examples of genetic traits that are beneficial in some environments but detrimental in others. Murine studies show that specific malaria-driven genetic changes, such as loss of the Duffy antigen receptor, result in higher serum chemokine levels and an increased inflammatory milieu, predisposing to the development of more aggressive prostate tumors (42). More recently, 2 APOL1 variants that are common in African chromosomes but absent from European chromosomes were shown to be strongly associated with kidney disease (43). The variants reside within haplotypes that harbor signatures of positive selection. The protein Apol1 is a trypanolytic factor that confers resistance to the otherwise deadly infection from the Trypanosoma brucei parasite. We hypothesize that interactions of immune profiles with pregnancy and lactation may lead to an increased risk of ER+ and basal-like breast cancers; the association may be seen most clearly in African Americans, who typically have a more robust inflammatory response. As discussed above, similar mechanisms may be involved in the etiology of ER+ breast cancer as well but may have a minor role relative to the powerful impact of hormone levels on this subtype.

Late age at first birth and recent birth (within 10 years) were associated with increased risk of both ER+ and ER− breast cancer in this study. Most previous studies have found later age at first birth to be positively associated with ER− breast cancer only or with both ER+ and ER− breast cancer (12–17). In contrast, the Carolina Breast Cancer Study observed an association with basal-like but not luminal-A cancers (19). Most studies to date have not reported on time since last pregnancy by ER/PR status.

Strengths of this study include the prospective data collection, high response rate, large sample size, and control for a large number of breast cancer risk factors. Notably, this is the first prospective study with sufficient numbers to assess reproductive factors in relation to ER+/PR− breast cancer among African American women. A limitation is that data on ER/PR status were unavailable for 40% of breast cancer cases because many cases were diagnosed before immunohistochemistry was routinely carried out on tumor tissue. However, cases with hormone receptor status data were closely similar with regard to reproductive factors and other breast cancer risk factors, mitigating concern about selection bias. We were unable to assess subtypes according to HER2 expression, but previous studies suggest that HER2 status does not modify associations with the ER+ subtype. Our ability to assess associations by duration of breastfeeding was limited because most participants who had breastfed had done so for less than 12 months total.

In summary, the present findings suggest that higher parity is associated with an increased risk of ER+/PR+ breast cancer in African American women. Because African American women have had more births on average than U.S. white women (44), this association may explain, in part, why incidence of ER+/PR+ breast cancer is higher in African American than white women who had a first degree family history of breast cancer.
women. Further, the results provide evidence of a protective effect of lactation on ER/PR cancer, at least among women who have a family history of breast cancer. Uptake of breastfeeding has been considerably lower in African American women than in other ethnic groups in spite of efforts to convince women of its numerous health benefits (45–47). Our results, taken together with recent results from studies of triple-negative and basal-like breast cancer, suggest that breastfeeding can reduce risk of developing the aggressive, difficult-to-treat breast cancers that disproportionately affect African American women.

Disclosure of Potential Conflicts of Interest

The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Cancer Institute or the NIH. Data on breast cancer pathology were obtained from several state cancer registries (AZ, CA, CO, CT, DE, DC, FL, GA, IL, IN, KY, LA, MD, MI, NJ, NY, NC, OK, PA, SC, TN, TX, VA) and results reported do not necessarily represent their views.

References

Parity and Lactation in Relation to Estrogen Receptor Negative Breast Cancer in African American Women

Julie R. Palmer, Deborah A. Boggs, Lauren A. Wise, et al.

Cancer Epidemiol Biomarkers Prev 2011;20:1883-1891. Published OnlineFirst August 16, 2011.

Updated version Access the most recent version of this article at: doi:10.1158/1055-9965.EPI-11-0465

Cited articles This article cites 46 articles, 8 of which you can access for free at: http://cebp.aacrjournals.org/content/20/9/1883.full#ref-list-1

Citing articles This article has been cited by 10 HighWire-hosted articles. Access the articles at: http://cebp.aacrjournals.org/content/20/9/1883.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.