null results in brief

GSTM1, GSTT1 Null Variants, and GPX1 Single Nucleotide Polymorphism Are Not Associated with Bladder Cancer Risk in Egypt

David Goerlitz1, Mai El Daly2, Mohamed Abdel-Hamid2,5, Do’a A. Saleh3, Lenka Goldman1, Sherif El Kafrawy2, Tamer Hifnawy3, Sameera Ezzat1, Mohamed A. Abdel-Aziz8, Mohamed Saad Zaghloul4, Rafat Ali Saber3, Hussein Khaled4, Sania Amr9, Yun-Ling Zheng1, Nabil Mikhail2,8, and Christopher Loffredo1

Abstract

Background: Bladder cancer is the most common male malignancy in Egypt, consists predominantly of urothelial cell carcinoma (UCC) and squamous cell carcinoma (SCC), and disparities in incidence exist between men and women regardless of geographic region. Tobacco smoke exposure and Schistosoma haematobium (SH) infection and the presence of GSTM1, GSTT1, and GPX1 genotypes, as modulators of the carcinogenic effect of reactive oxidative species, were hypothesized to modify bladder cancer risk and possibly explain these gender differences.

Methods: We evaluated the association between bladder cancer risk and functional polymorphisms in the GSTM1, GSTT1, and GPX1 genes in 625 cases and 626 matched population-based controls in Egypt and assessed for potential interactions between these candidate genes and environmental exposures, such as smoking and SH infection. We analyzed the risk for developing UCC and SCC separately.

Results: None of these functional polymorphisms were significantly associated with bladder cancer risk. There were no significant interactions between genotypes and smoking or SH infection in this population, nor was any difference detected in genotypic risk between men and women.

Conclusions: Our findings suggest that common genetic variations in GSTM1, GSTT1, and GPX1 are not associated with bladder cancer risk overall and that well-known environmental risk factors, such as smoking and SH infection, do not interact with these genes to modulate the risk.

Impact: Our data indicate that common genetic variations in GSTM1, GSTT1, and GPX1 were not associated with bladder cancer risk. Cancer Epidemiol Biomarkers Prev; 20(7); 1552–4. ©2011 AACR.

Introduction

Bladder cancer is the most common male malignancy in Egypt, and disparities in incidence exist between men and women regardless of geographic region, with a worldwide age-standardized incidence rate of 10.1 per 100,000 persons-years for men and 2.5 per 100,000 persons-years for women (1). Tobacco smoke exposure and Schistosoma haematobium (SH) infection are established risk factors for bladder cancer. In Egypt, smoking is much more prevalent (2) among adult males (22%–47%) than among females (2%–7%), but smoking has not been shown to fully account for the observed gender differences in bladder cancer incidence (1). A common pathway of bladder carcinogenesis for both tobacco smoke and SH infection may be that the cellular response to oxidative stress and inflammation, and several genes including glutathione-S-transferase (GST) and glutathione peroxidase (GPX) are thought to be involved in the mediation of the toxicity of reactive oxygen species. A number of studies have investigated the association between GSTM1, GSTT1, and GPX1 variant genotypes and increased bladder cancer risk, including interactions with smoking, SH infection, and gender, however, with conflicting results. In the present study, polymorphisms in GSTM1, GSTT1, and GPX1 genes were hypothesized to modify bladder cancer risk and possibly explain these gender differences.
Materials and Methods

Study population

Adult urinary bladder cancer cases (n = 625) were recruited within 1 year of diagnosis and noncancer controls (n = 626) were recruited as previously described (3). Cases were confirmed by pathologic examination and defined as urothelial (transitional) cell carcinoma (UCC) and squamous cell carcinoma (SCC), adenocarcinoma, or other types of carcinoma of the bladder. We included only those with UCC and SCC (95% of the cases) in this analysis. After informed consent, cases and controls were administered a detailed questionnaire that included questions on sociodemographic characteristics, smoking history, and medical history, including a history of schistosomiasis.

Laboratory analyses

GSTM1 null, GSTT1 null, and GPX1 rs1050450 genotypes were determined using TaqMan allelic discrimination assays (Applied Biosystems), with a successful genotyping rate of 99.0% or more and genotype concordance (among 10% blind quality control duplicates) of 99.0% or more.

Statistical analyses

ORs and 95% CIs were used to estimate associations between each genotype and bladder cancer risk. The estimates were obtained from unconditional logistic regression analysis, adjusting for sex, age, region of residence, tobacco smoking, and schistosomiasis. After the initial analysis of all cases combined, separate models were created for UCC and SCC, and stratified by gender.

Table 1. Distribution of demographic variables and risk factors of bladder cancer

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UCC</td>
<td>SCC</td>
<td>UCC</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Total</td>
<td>389</td>
<td>62</td>
<td>236</td>
</tr>
<tr>
<td>Females</td>
<td>55</td>
<td>14.1</td>
<td>67</td>
</tr>
<tr>
<td>Males</td>
<td>334</td>
<td>85.9</td>
<td>169</td>
</tr>
<tr>
<td>Smoking (males only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smokers</td>
<td>71</td>
<td>21.3</td>
<td>49</td>
</tr>
<tr>
<td>Smokers</td>
<td>263</td>
<td>78.7</td>
<td>120</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never infected</td>
<td>165</td>
<td>42.4</td>
<td>110</td>
</tr>
<tr>
<td>Infected</td>
<td>198</td>
<td>50.9</td>
<td>108</td>
</tr>
<tr>
<td>Undetermined</td>
<td>26</td>
<td>6.7</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 2. Bladder cancer risk associated with GSTM1, GSTT1, and GPX1 polymorphisms

<table>
<thead>
<tr>
<th></th>
<th>UCC</th>
<th>SCC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases</td>
<td>Controls</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>GSTM1</td>
<td>+</td>
<td>274</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>344</td>
<td>332</td>
</tr>
<tr>
<td>GSTT1</td>
<td>+</td>
<td>470</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>147</td>
<td>156</td>
</tr>
<tr>
<td>GPX1</td>
<td>CC</td>
<td>330</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>236</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>46</td>
<td>38</td>
</tr>
</tbody>
</table>

*Adjusted for sex, age, region of residence, tobacco smoking, and schistosomiasis. For GSTM1 and GSTT1, “+” indicates heterozygous or homozygous carriers of the wild-type allele and “−” indicates homozygous carriers of the null allele. Numbers do not sum to the total samples available because of missing genotype data.
tobacco smoking in men (ever vs. never), and self-reported history (yes/no) of schistosomiasis. For instances wherein the number of exposed subjects was fewer than 10 for any of the aforementioned comparisons, we used exact methods to estimate the OR and 95% CI. All statistical analyses were done using SAS (version 9.2; SAS Institute Inc.). The genotype distributions of all 3 polymorphisms were in Hardy–Weinberg equilibrium in control subjects, calculated using Pearson’s goodness-of-fit test.

Results

Table I shows the frequency distribution of the demographic variables and putative risk factors of bladder cancer. We found no statistically significant association between bladder cancer risk for developing both UCC and SCC (men and women combined) and the GSTM1 null variant (OR = 0.94, 95% CI = 0.74–1.18), GSTT1 null variant (OR = 1.09, 95% CI = 0.83–1.42), and GPX1 T/T genotype (OR = 1.02, 95% CI = 0.64–1.64; ref. Table 2). In addition, no statistically significant associations were observed for UCC or SCC separately. Similarly, we found no significant interactions between genotypes and smoking, SH infection, or gender (data not shown).

Discussion

We found no statistically significant association between bladder cancer risk and functional polymorphisms in the GSTM1, GSTT1, and GPX1 genes, and no significant interactions between genotypes and smoking, SH infection, or gender.

References

Previous studies have found that the GSTM1 null genotype is associated with an increased risk of developing bladder cancer overall, among SH-infected individuals (4), and among male smokers (5). Other studies have reported increased risk in women but not in men, among women, and only among smokers (6), as well as no overall association with increased risk (7). Associations between the GSTT1 null variant and overall increased risk were reported by some investigators (7) but not others (6) and among women but not among men (7). Similarly, studies of the association of the variant GPX1 genotype with bladder cancer reported inconsistent findings (8, 9).

One possible explanation for the inconsistencies in findings of prior and current studies is that they could reflect differences in gene–environment interactions in different populations. Another possibility is differences in laboratory methods (e.g., RFLP may have a higher rate of false positives vs. TaqMan).

In conclusion, our results suggest that common genetic variations in GSTM1, GSTT1, and GPX1 are not associated with overall bladder cancer risk.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received December 15, 2010; accepted March 1, 2011; published OnlineFirst May 17, 2011.
Cancer Epidemiology, Biomarkers & Prevention

GSTM1, GSTT1 Null Variants, and GPX1 Single Nucleotide Polymorphism Are Not Associated with Bladder Cancer Risk in Egypt

David Goerlitz, Mai El Daly, Mohamed Abdel-Hamid, et al.

Cancer Epidemiol Biomarkers Prev 2011;20:1552-1554. Published OnlineFirst May 17, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-10-1306

Cited articles
This article cites 9 articles, 1 of which you can access for free at:
http://cebp.aacrjournals.org/content/20/7/1552.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.