Null Results in Brief

Prostate Cancer Susceptibility Polymorphism rs2660753 Is Not Associated with Invasive Ovarian Cancer

Ernest K. Amankwah1, Linda E. Kelemen1, Qinggang Wang1, Honglin Song2, Georgia Chenevix-Trench5, on behalf of the Australian Ovarian Cancer Study Group; Jonathan Beesley5, Penelope M. Webb5, on behalf of the Australian Cancer Study (Ovarian Cancer); Celeste L. Pearce6, Anna H. Wu6, Malcolm C. Pike6,9, Daniel O. Stram6, Jenny Chang-Claude19, Shan Wang-Gohrke20, Roberta B. Ness10, Ellen L. Goode11, Alice S. Whittemore7, Valerie McGuire5, Weiva Sieh7, Simon A. Gayther6, Aleksandra Gentry-Maharaj4, Usha Menon4, Susan J. Ramus6, Mary Anne Rossing15, Jennifer A. Doherty15, Marc T. Goodman16, Hoda Anton-Culver8, Argyrios Ziogas8, Joellen M. Schildkraut18, Andrew Berchuck18, Paul D.P. Pharoah2, on behalf of the Australian Ovarian Cancer Study Group; Jonathan Beesley5, Penelope M. Webb5, on behalf of the Australian Cancer Study (Ovarian Cancer):, Celeste L. Pearce6, Anna H. Wu6, Malcolm C. Pike6,9, Daniel O. Stram6, Jenny Chang-Claude19, Shan Wang-Gohrke20, Roberta B. Ness10, Ellen L. Goode11, Alice S. Whittemore7, Valerie McGuire5, Weiva Sieh7, Simon A. Gayther6, Aleksandra Gentry-Maharaj4, Usha Menon4, Susan J. Ramus6, Mary Anne Rossing15, Jennifer A. Doherty15, Marc T. Goodman16, Hoda Anton-Culver8, Argyrios Ziogas8, Joellen M. Schildkraut18, Andrew Berchuck18, Paul D.P. Pharoah2, on behalf of the Australian Ovarian Cancer Study Consortium.

Abstract

Background: We previously reported an association between rs2660753, a prostate cancer susceptibility polymorphism, and invasive epithelial ovarian cancer (EOC; OR = 1.2, 95% CI = 1.0–1.4, P trend = 0.01) that showed a stronger association with the serous histological subtype (OR = 1.3, 95% CI = 1.1–1.5, P trend = 0.003).

Methods: We sought to replicate this association in 12 other studies comprising 4,482 cases and 6,894 controls of white non-Hispanic ancestry in the Ovarian Cancer Association Consortium.

Results: No evidence for an association with all cancers or serous cancers was observed in a combined analysis of data from the replication studies (all: OR = 1.0, 95% CI = 0.9–1.1, P trend = 0.61; serous: OR = 1.0, 95% CI = 0.9–1.1, P trend = 0.85) or from the combined analysis of discovery and replication studies (all: OR = 1.0, 95% CI = 1.0–1.1, P trend = 0.28; serous: OR = 1.1, 95% CI = 1.0–1.2, P trend = 0.11). There was no evidence for statistical heterogeneity in ORs across the studies.

Conclusions: Although rs2660753 is a strong prostate cancer susceptibility polymorphism, the association with another hormonally related cancer, invasive EOC, is not supported by this replication study.

Introduction

Invasive epithelial ovarian cancer (EOC) has a recognized genetic component, but known high penetrance genes, such as BRCA1 and BRCA2, explain less than 10% of EOC risk (1). The remaining unexplained risk is probably caused by a combination of multiple low to moderate penetrance genetic variants (2).
We previously reported an association between rs2660753 on chromosome 3p12 and invasive EOC (OR = 1.2, 95% CI = 1.0–1.4, \(P_{\text{trend}} = 0.01 \), 1,973 cases/3,419 controls) that showed a stronger association with the serous histological subtype (OR = 1.3, 95% CI = 1.1–1.5, \(P_{\text{trend}} = 0.003 \), 901 cases/3,303 controls; ref. 3). rs2660753 is a prostate cancer susceptibility polymorphism identified from a genome-wide association study of Europeans (4) and replicated in independent populations of European (5) and non-European (6) ancestry. The nearest genes (70–198 kb away) to rs2660753, VGLL3, CHMP2B, and Pit-1/POU1F1, encode proteins with potential roles in tumorigenesis (3) and the 3p12.3-pcen region has been identified as a candidate tumor suppressor gene locus (7).

In this investigation, we sought to replicate the association between rs2660753 and invasive EOC in a larger sample of 12 additional studies from the international Ovarian Cancer Association Consortium (OCAC) comprising 4,482 cases and 6,894 controls.

Materials and Methods

Study population

Sixteen ovarian cancer case-control studies contributed data to this analysis. Four of the studies were included in

<table>
<thead>
<tr>
<th>Study(^a)</th>
<th>Controls(^b)</th>
<th>Cases(^b)</th>
<th>MAF(^b)</th>
<th>P(^{\text{HWE}})(^b)</th>
<th>OR (95% CI)(^b)</th>
<th>(P_{\text{trend}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td>AA Aa aa</td>
<td>AA Aa aa</td>
<td>0.11</td>
<td>0.48</td>
<td>1.3 (0.8–2.0)</td>
<td>0.24</td>
</tr>
<tr>
<td>UKO</td>
<td>141 39 1</td>
<td>197 67 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAL</td>
<td>467 89 5</td>
<td>366 95 5</td>
<td>0.09</td>
<td>0.79</td>
<td>1.3 (1.0–1.8)</td>
<td>0.10</td>
</tr>
<tr>
<td>SEA</td>
<td>677 115 2</td>
<td>368 66 4</td>
<td>0.07</td>
<td>0.30</td>
<td>1.2 (0.8–1.6)</td>
<td>0.37</td>
</tr>
<tr>
<td>Summary, discovery</td>
<td>2,305 430 14</td>
<td>1,576 370 22</td>
<td>0.08</td>
<td>0.26</td>
<td>1.2 (1.1–1.4)</td>
<td>0.004</td>
</tr>
<tr>
<td>Replication set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAW</td>
<td>123 33 2</td>
<td>53 16 0</td>
<td>0.12</td>
<td>1.0</td>
<td>0.9 (0.5–1.7)</td>
<td>0.71</td>
</tr>
<tr>
<td>NHS</td>
<td>271 80 6</td>
<td>84 21 3</td>
<td>0.13</td>
<td>0.97</td>
<td>1.0 (0.6–1.5)</td>
<td>0.90</td>
</tr>
<tr>
<td>MAY</td>
<td>306 58 5</td>
<td>221 54 0</td>
<td>0.09</td>
<td>0.22</td>
<td>1.1 (0.7–1.6)</td>
<td>0.68</td>
</tr>
<tr>
<td>GER</td>
<td>341 83 6</td>
<td>174 31 1</td>
<td>0.11</td>
<td>0.63</td>
<td>0.7 (0.5–1.1)</td>
<td>0.09</td>
</tr>
<tr>
<td>UCI</td>
<td>350 93 8</td>
<td>225 44 7</td>
<td>0.12</td>
<td>0.51</td>
<td>0.9 (0.6–1.2)</td>
<td>0.46</td>
</tr>
<tr>
<td>USC</td>
<td>376 108 11</td>
<td>297 73 5</td>
<td>0.13</td>
<td>0.32</td>
<td>0.8 (0.6–1.1)</td>
<td>0.24</td>
</tr>
<tr>
<td>POL</td>
<td>435 142 18</td>
<td>187 68 2</td>
<td>0.15</td>
<td>0.14</td>
<td>0.9 (0.7–1.2)</td>
<td>0.60</td>
</tr>
<tr>
<td>HOP</td>
<td>453 131 10</td>
<td>227 57 7</td>
<td>0.13</td>
<td>0.85</td>
<td>0.9 (0.7–1.3)</td>
<td>0.69</td>
</tr>
<tr>
<td>DOV</td>
<td>572 141 6</td>
<td>419 105 7</td>
<td>0.11</td>
<td>0.56</td>
<td>1.1 (0.8–1.4)</td>
<td>0.66</td>
</tr>
<tr>
<td>NCO</td>
<td>575 153 9</td>
<td>491 112 2</td>
<td>0.12</td>
<td>0.86</td>
<td>0.8 (0.6–1.0)</td>
<td>0.09</td>
</tr>
<tr>
<td>NEC</td>
<td>692 179 18</td>
<td>450 150 13</td>
<td>0.12</td>
<td>0.11</td>
<td>1.2 (1.0–1.5)</td>
<td>0.12</td>
</tr>
<tr>
<td>AUS</td>
<td>884 202 14</td>
<td>685 182 9</td>
<td>0.11</td>
<td>0.52</td>
<td>1.1 (0.9–1.4)</td>
<td>0.34</td>
</tr>
<tr>
<td>Summary, replication</td>
<td>5,378 1,403 113</td>
<td>3,513 813 56</td>
<td>0.12</td>
<td>0.06</td>
<td>1.0 (0.9–1.1)</td>
<td>0.61</td>
</tr>
<tr>
<td>Summary, combined</td>
<td>7,683 1,833 127</td>
<td>5,089 1,283 78</td>
<td>0.11</td>
<td>0.14</td>
<td>1.0 (1.0–1.1)</td>
<td>0.28</td>
</tr>
</tbody>
</table>

\(^a\)STA, GEOCS (Genetic Epidemiology of Ovarian Cancer Study), California; UKO, UKOPS (United Kingdom Ovarian Cancer Population Study), United Kingdom; MAL, MALOVA (Malignant Ovarian Cancer Study), Denmark; SEA, SEARCH (Studies of Epidemiology and Risk Factors in Cancer Heredity Ovarian Cancer Study), England; HAW, HAWAII (Hawaii Ovarian Cancer Study), Hawaii; NHS (Nurses’ Health Study); MAY, MAYO (Mayo Clinic Ovarian Cancer Case Control Study), Mid-west; GER, GOCS (German Ovarian Cancer Study), Germany; UCI (the Orange and San Diego Counties California Study), California; USC, LAC-CCOC (Los Angeles County Case-Control Studies of Ovarian Cancer), California; POL (Polish Ovarian Cancer Study), Poland; HOP, HOPE (Hormones and Ovarian Cancer Prediction Study), Pittsburg; DOV, DOVE (Diseases of the Ovary and their Evaluation), Washington; NCO, NCOCs (North Carolina Ovarian Cancer Study), North Carolina; NEC, NECC (New England based Case-Control Study), New England; AUS, AOCS (Australian Ovarian Cancer Study) and ACS (Australian Cancer Study-Ovarian cancer), Australia.

\(^b\)AA, homozygous major allele; Aa, heterozygous; aa, homozygous minor allele; MAF, minor allele frequency in controls; \(P^{\text{HWE}} \), \(P \) values from the chi-square test assessing deviation of genotype frequencies among controls from those expected under HWE.

\(^c\)OR and 95% CI adjusted for age (<40, 40–49, 50–59, 60–69, and ≥70 years) in study-specific analyses and for age and study in summary analyses.
our initial report (discovery set; ref. 3) and 12 were
included in follow up genotyping (replication set).
Details of each of the studies have been published pre-
viously (8). Each study received ethics committee
approval and all study subjects provided informed writ-
ten consent. Pathologic and questionnaire data included
tumor behavior, histology, age at diagnosis (or compar-
able date for controls), family history of breast or ovarian
cancer and ethnicity/race.

Genotyping
Genotyping was carried out by using the 5' nuclease
Taqman allelic discrimination assay (Applied Biosys-
tems), except the Australian Ovarian Cancer Study and the
Australian Cancer Study-Ovarian Cancer that used the
Sequenom iPLEX protocol (Sequenom Inc.), and by
using similar conditions as the original study (3). Con-
sistency across laboratories was assessed by genotyping a
common set of 95 DNAs (90 CEPH trios and 5 duplicate
samples) with 98% or more concordance in genotype
calls. Details of OCAC's criteria for acceptable genotyp-
ing have been described previously (8).

Statistical analysis
Analyses were restricted to white non-Hispanic sub-
jects. We excluded cases with non-EOC and borderline
tumors. Genotypes of participants were used to estimate
allele frequencies and departure from Hardy–Weinberg
equilibrium (HWE) was assessed in controls by by using
a chi-squared test. Single nucleotide polymorphism asso-
ciations were evaluated by using unconditional logistic
regression under ordinal and codominant genetic models
to estimate ORs and 95% CIs. Statistical models were
adjusted for age (<40, 40–49, 50–59, 60—69, and ≥70
years) in study-specific analyses and for age and study
in combined analyses. Prior to pooling, tests of hetero-
genosity in ORs across studies were conducted by using the
likelihood ratio test comparing models with and
without a product term for genotype and study. Statisti-
tical tests were implemented with SAS software (SAS
Institute).

Results
Genotype distributions for controls in all the studies
were consistent with HWE (Table 1). No evidence for an
association was observed at rs2667053 in the replication
set (OR = 1.0, 95% CI = 0.9–1.1, \(P_{\text{trend}} = 0.61 \) for all 4,482
cancers and OR = 1.0, 95% CI = 0.9–1.1, \(P_{\text{trend}} = 0.85 \) for
2,515 serous cancers) or in the combined discovery and
replication sets (OR = 1.0, 95% CI = 1.0–1.1, \(P_{\text{trend}} = 0.28 \)
for all 6,450 cancers and OR = 1.1, 95% CI = 1.0–1.2, \(P_{\text{trend}}
= 0.11 \) for 3,563 serous cancers) under the ordinal model
(Fig. 1). No statistically significant associations were
observed under the codominant model (data not shown).
There was no statistical heterogeneity in ORs for all
ovarian cancers or serous cancers when the discovery
and replication sets were combined (\(P_{\text{heterogeneity}} > 0.10 \)).
Analyses stratified by family history of breast or ovarian cancer in first-degree relatives did not show statistically significant associations for all cancers (OR = 0.9, P = 0.67, 481 cases with family history and OR = 1.0, P = 0.81, 1,576 cases without family history) or for serous cancers (OR = 1.1, P = 0.70, 297 cases with family history and OR = 1.0, P = 0.93, 928 cases without family history).

Discussion

Our findings, based on 12 studies participating in the international OCAC, do not support an association between rs2667053 and invasive EOC overall or for the serous histological type. We used a larger sample size and applied similar assays and stringent quality control criteria to genotype data as in the original study. In the current study, the power to detect an OR of 1.2, as previously reported (3), with minor allele frequency of 0.12 and Type 1 error of 0.01 was 87%. To detect smaller effects, as observed for serous cancers in the current study, a much larger sample is required. There was no evidence of statistical heterogeneity in ORs across studies or of effect modification by family history. Although variant rs2667053 is a strong candidate for prostate cancer susceptibility, it does not seem to be a candidate risk factor for ovarian cancer.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The Australian Ovarian Cancer Study (AOCS) Management Group (D. Bowtell, G. Chenevix-Trench, A. deFazio, D. Gertig, A. Green, and P.M. Webb) gratefully acknowledges the contribution of all the clinical and scientific collaborators (see http://www.aocstudy.org/). The Australian Ovarian Cancer Study (AOCS) Management Group (A. Green, P. Parsons, N. Hayward, P. M. Webb, and D. Whiteman) thank all of the project staff, collaborating institutions, and study participants. The German Ovarian Cancer Study (GER) acknowledges Ursula Eilber and Tanja Koehler for technical assistance with the study. The Polish Ovarian Cancer Study (POL) thanks Drs Louise Brinton, Mark Sherman, Stephen Chanock of the National Cancer Institute, Prof Neolina Szeszenia-Dabrowska and Dr Beata Pfeplomska of the Nofer Institute of Occupational Medicine (Lodz, Poland), Prof Witold Zatonoski of the M Sklodowska-Curie Cancer Center and Institute of Oncology (Warsaw, Poland), and Pei Chao and Jane Wang (IMS, Silver Spring, MD) for their contribution. The United Kingdom Ovarian Cancer Population Study (UKO) is thankful to all members of the research team, including nurses, scientists, data entry personnel, and consultant gynaecological oncologists.

Grant Support

The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith. Funding for the individual participating studies was provided by the U.S. Army Medical Research and Materiel Command (DAMD17-01-1-0729), the Cancer Council Tasmania and Cancer Foundation of Western Australia (AOCOS study), and the National Health and Medical Research Council of Australia (199600, ACS study); G. C.-Trench and P. M. Webb are supported by the NHMRC of Australia; U.S. NIH grants B01-CA-112523 and B01-CA-87538 (DOV); the German Federal Ministry of Education and Research, the Program of Clinical Biomedical Research 01 GB 9401, the state of Baden-Wurttemberg through the Medical Faculty, University of Ulm P685 and the German Cancer Research Center (GER); the U.S. National Institutes of Health (R01 CA 58598, N01-CN-55424, N01-PC-67001; HAW); Mr. Mermaid I, The Danish Cancer Society and the National Cancer Institute R01-CA-61107 (MAL); National Cancer Institute R01-CA-122443 and R01-CA-122443 (MAY); National Cancer Institute R01-CA-76016 (NCO); U.S. National Institutes of Health of P01 CA87969 and B01 CA49449 (NHS); National Institutes of Health R01 CA54419 and P50 CA100599 (NEC); Intramural Funds from the U.S. National Cancer Institute, National Institutes of Health, Division of Cancer Epidemiology and Genetics (POL); U.S. National Institutes of Health U01 CA71966, R01 CA10656, and U01 CA69417 for recruitment of controls by the Northern California Cancer Center (STIA); Cancer Research UK (SEA); National Cancer Institute CA-58860 and CA-92044 and the Lon V Smith Foundation LVS-39420 (UEI); Cancer Research UK, the Eve Appeal, the OA Foundation and the Department of Health’s NHS Biomedical Research Centre funding scheme (UKO); the California Cancer Research Program grants 00-01389V-20170 and 2110200, U.S. Public Health Service grants CA14099, CA17054, CA61132, CA63464, N01-PC-67010 and R01-CA11348, and California Department of Health Services sub-contract 050-E8709 (USC). E. K. Amankwah is supported by a fellowship from the Alberta Heritage Foundation for Medical Research. L. E. Kelemen is supported by Alberta Cancer Research Institute and the Canadian Institutes of Health Research Investigator award.

Received January 17, 2011; accepted January 24, 2011; published OnlineFirst March 17, 2011.
Prostate Cancer Susceptibility Polymorphism rs2660753 Is Not Associated with Invasive Ovarian Cancer

Cancer Epidemiol Biomarkers Prev 2011;20:1028-1031. Published OnlineFirst March 17, 2011.

Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-11-0053

This article cites 8 articles, 3 of which you can access for free at:
http://cebp.aacrjournals.org/content/20/5/1028.full#ref-list-1

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.