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Abstract
Background: Case–control studies conducted in North America, Europe, and Asia provided evidence of

increased lung cancer risk due to radon in homes. Here, the association between residential radon and lung

cancer mortality was examined in a large-scale cohort study.

Methods:Nearly 1.2 million Cancer Prevention Study-II participants were recruited in 1982. Mean county-

level residential radon concentrations were linked to study participants according to ZIP code information at

enrollment [mean (SD)¼ 53.5 Bq/m3 (38.0)]. Cox proportional hazards regressionmodels were used to obtain

adjusted HR and 95% CI for lung cancer mortality associated with radon. Potential effect modification by

cigarette smoking, ambient sulfate concentrations, and other risk factors was assessed on both the additive

and multiplicative scales.

Results: Through 1988, 3,493 lung cancer deaths were observed among 811,961 participants included in the

analysis. A significant positive linear trend was observed between categories of radon concentrations and

lung cancer mortality (P ¼ 0.02). A 15% (95% CI, 1–31) increase in the risk of lung cancer mortality was

observed per 100 Bq/m3 increase in radon. Participants with mean radon concentrations above the EPA

guideline value (148 Bq/m3) experienced a 34% (95% CI, 7–68) increase in risk for lung cancer mortality

relative to those below the guideline value.

Conclusions: This large prospective study showed positive associations between ecological indicators of

residential radon and lung cancer.

Impact: These results further support efforts to reduce radon concentrations in homes to the lowest possible

level. Cancer Epidemiol Biomarkers Prev; 20(3); 438–48. �2011 AACR.

Introduction

Lung cancer is the leading cause of cancer mortality in
the United States. In 2009, it was estimated that a total of
219,440 new lung cancer cases and 159,390 deaths
occurred (1). Lung cancer is a highly fatal disease, with
a 5-year survival ratio of 15% (1). Although incidence
rates for lung cancer have been declining for males, they

are only now leveling off after several decades of increase
for females, most likely because of changes in cigarette
smoking patterns in recent decades (1). Although the
majority of lung cancer cases can be attributed to active
cigarette smoking, residential radon and ambient air
pollution also have been implicated as important risk
factors for this disease in the general population (2–5).

Radon gas is formed during the radioactive decay of
uranium-238, which is naturally present in rocks and soils
in the environment. In 1988, the International Agency for
Research on Cancer (IARC) determined that radon was a
cause of human lung cancer, based on studies of under-
ground miners historically exposed to high levels of the
gas (2). It was also observed that a-particles emitted from
radon decay products can damage DNA in human lung
tissue (2). Bonner and colleagues (6) recently reported an
interaction between glutathione-S-transferase M1 and
radon, suggesting that radonmay also induce lung cancer
through oxidative mechanisms.

Radon gas enters homes through cracks and other
openings in the foundation and accumulates largely in
the basement and lower living areas (7). Although there
have been more than 20 case–control studies examining
the association between residential radon and lung
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cancer, results were limited by small sample sizes and
disparate findings. Recent efforts to combine data from
individual case–control studies have provided for the
first time strong evidence for a link (8–11). In North
America, data from 7 case–control studies, involving
3,622 lung cancer cases and 4,966 controls were com-
bined, revealing that each 100 Bq/m3 increase in radon
was associated with an 11% (95% CI, 0–28) increase in
lung cancer risk (10, 11). Results strengthened in a subset
of the data with limited residential mobility and complete
radon exposure histories [excess relative risk (ERR) ¼
21%; 95% CI, 3—52]. In Europe, data from a total of 7,148
lung cancer cases and 14,208 controls were also combined
with similar findings observed (8, 9). Overall, each 100
Bq/m3 increase in radon was associated with an 8% (95%
CI, 3–16) increase in lung cancer risk. The evidence
available to date suggests that radon may be responsible
for 10% to 15% of the lung cancer burden, making radon
the second leading cause of lung cancer after cigarette
smoking (3).
Although there have been a number of residential case–

control studies capturing retrospective data on indivi-
dual smoking habits and other lung cancer risk factors,
there has been only one prospective study in the general
population. Ruano-Ravina and colleagues (12) recently
followed up 241 control subjects from a previous case–
control study of residential radon and lung cancer in
Spain. An elevated, although imprecise, lung cancer risk
was observed in subjects with radon concentrations
above the guideline value of the U.S. Environmental
Protection Agency (EPA; 4 pCi/L ¼ 148 Bq/m3; RR ¼
6.6; 95% CI, 1.2–38) relative to subjects below the guide-
line value.
There have also been few studies to examine the joint

effects of residential radon and other inhalable environ-
mental agents including passive smoke and ambient air
pollution (13, 14). The question remains as to whether
such agents may interact, thereby producing additive or
multiplicative effects on lung cancer risk. Radon decay
products may also attach to aerosols present in the
environment, possibly influencing lung deposition and
dose characteristics relevant for lung cancer (4, 15–16).
The purpose of this article is to examine the association

between residential radon and lung cancer mortality in a
large-scale prospective study. The American Cancer
Society Cancer Prevention Study-II (CPS-II) is a large,
well-established cohort, with detailed individual-level
risk factor data collected at enrollment, including cigar-
ette smoking, passive smoking, and occupational risk
factors for lung cancer. It provides a unique opportunity
to further strengthen the body of evidence for an associa-
tion between residential radon and lung cancer and
allows for an examination of the potential confounding
or modifying effects of a range of individual and ecolo-
gical-level risk factors including passive smoking and
ambient air pollution. Results examining associations
between residential radon and other malignant and non-
malignantmortality outcomes other than lung cancer will

be presented separately (Turner and colleagues, unpub-
lished data).

Materials and Methods

Study population
The CPS-II is a prospective study comprised of nearly

1.2 million participants enrolled by more than 77,000
volunteers in 1982. This cohort has been extensively
studied to examine the long-term health effects of ambi-
ent air pollution (5, 17, 18). Ethics approval for the CPS-II
was obtained from the Emory University School of Med-
icine Human Investigations Committee. Participants
were recruited in all 50 U.S. states as well as the District
of Columbia and Puerto Rico. Participants were largely
friends and family members of the volunteers. For inclu-
sion in CPS-II, participants were at least 30 years of age
and had at least one family member ages 45 years or
more. A 4-page self-administered questionnaire com-
pleted at enrollment captured data on a range of demo-
graphic, lifestyle, medical, and other personal and family
characteristics including ZIP code of residence.

Because no updated information was collected on
cigarette smoking status from enrollment, follow-up in
the present study is restricted to the first 6 years of follow-
up only (1982–1988; ref. 19). In CPS-II, follow-up of study
participants for vital status has been conducted every 2
years. In 1984, 1986, and 1988, vital status was obtained
from the study volunteers, confirmed by obtaining the
corresponding death certificate. Subsequent to 1988, fol-
low-up has been conducted through computerized link-
age to the National Death Index (20). More than 99% of all
known deaths have been assigned a cause. Lung cancer
deaths were classified by the underlying cause of death
according to ICD-9 162 (International Classification of
Disease; ref. 21).

Of a total of 1,184,881 CPS-II participants, subjects were
excluded due to missing vital status (419), prevalent
cancer (except nonmelanoma skin cancer) at enrollment
(82,329),missingZIP code (99,479) or county data (22,872),
or missing data on radon (5,836) or individual-level cov-
ariates of interest (161,985). A total of 811,961 participants
in 2,754 counties were retained for analysis, amongwhich
3,493 lung cancer deaths were observed.

Ecological measures of residential radon
Study participants were assigned to a primary county

of residence using 5-digit ZIP code information provided
at enrollment according to the ZIP code boundaries
(STF3B) of the 1980U.S. Census (22). Ecological indicators
of residential radon concentrations were obtained from
the Lawrence Berkeley National Laboratory (LBL) and
the University of Pittsburgh.

Because long-term residential radon monitoring data
in the United States is sparse, researchers at the LBL
sought to estimate the annual average radon concentra-
tions in the main living areas of homes by county using
available data (23, 24). More specifically, both short-term
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and long-term indoor radon monitoring data were used
along with a variety of geological, soil, meteorologic, and
housing data to predict mean residential radon concen-
trations in a statistical model. Data from the EPA State
Residential Radon Survey (SRRS), involving a random
sample of approximately 60,000 short-term screening
measurements from homes in the mid- to late 1980s,
were combined with geological data, including estimated
radium concentrations, and location of screening mea-
surements within the home, as well as a short- to long-
term radon monitoring data conversion factor estimated
on the basis of the relationship between radon concentra-
tions observed in the SRRS and in the U.S. National
Residential Radon Survey (NRRS; 1989–1990), the only
long-term residential radon survey conducted in the
United States to date with representative data collected
on nearly 5,700 homes in 125 counties (7), to predict
annual average radon concentrations in homes in 3,079
U.S. counties.

At the University of Pittsburgh, Cohen (25, 26, 27)
compiled a database of mean county-level residential
radon concentrations for 1,601 U.S. counties based on a
series of screening measurements made in a nonrandom
sample of homes obtained from 3 independent data
sources from the mid- to late 1980s: the University of
Pittsburgh (272,000 measurements in 1,217 counties), the
U.S. EPA (40,000 measurements in 1,141 counties), and
measurements obtained from various other state-level
sources (Florida, New Jersey, South Carolina, New
Hampshire, New York, Iowa, Idaho, Ohio, Utah). Mean
county-level residential radon concentrations were esti-
mated by averaging all available data in each county with
at least 10 available measurements. Data from the states
of Florida, California, and Arizona were excluded in the
final available county-level dataset by Cohen (25, 26)
because of concerns surrounding the representativeness
of data for individuals in states with high rates of migra-
tion (mainly due to retirement). Mean county-level resi-
dential radon concentrations were normalized to the data
of the U.S. NRRS (7). Mean county-level residential radon
concentrations from both data sources were linked to
study participants as indicators of historic residential
radon exposure.

Sociodemographic ecological covariates
Data on a range of social and demographic ecological

covariates were compiled for 20,561 participant ZIP codes
from the 1980 U.S. Census including median household
income, and percent air conditioning, nonwhite, black,
Hispanic, post–secondary education, unemployment,
poverty, urban, moving, and homes with a well (22).
The selection of ecological covariates was informed by
previous air pollution studies in the CPS-II cohort (17, 18).

Air pollution
Average ambient sulfate (SO4) data for 149 U.S. metro-

politan statistical areas were previously compiled by
members of our research team based on the data of the
Inhalable Particle Monitoring Network and the National
Aerometric Database for the years 1980 and 1981 (5, 17,
18). Sulfate air pollution was previously found to be
associated with lung cancer mortality in the CPS-II cohort
in the follow-up time period of interest here (28). Mean
sulfate concentrations ranged from 1.4 to 15.6 mg/m3with
an average value (SD) of 6.5 (2.8) mg/m3.

Statistical analysis
Cox proportional hazards regressionmodelswere used

to examine the independent effects of residential radon
on lung cancer mortality by using SAS PROC PHREG
(29). The baseline hazard in the proportional hazards
models was stratified by 1-year age categories, sex, and
race (white, black, other). Follow-up time since enroll-
ment (1982) was used as the time axis. The survival times
of those still alive at the end of follow-up were censored.
Residential radon concentrations were examined in 3
ways: as a continuous variable (per 100 Bq/m3), as a 7-
level categorical variable where the reference category
was <25 Bq/m3 (10, 11), and as a dichotomous variable
where the cutpoint was at the U.S. EPA residential radon
guideline value (148 Bq/m3).

EstimatedHRs and95%CIswere adjusted for a range of
individual-level risk factors including education, marital
status, body mass index (BMI), BMI squared, cigarette
smoking status, cigarettes per day (current and former
smokers), cigarettes per day squared (current and former
smokers), years smoked (current and former smokers),

Table 1. Distribution of mean county-level residential radon concentrations (LBL; Bq/m3), at enrollment
(1982), by region, CPS-II cohort, United States

Radon measure Total
(n ¼ 811,961)

Northeast
(n ¼ 170,281)

South
(n ¼ 257,243)

Midwest
(n ¼ 234,952)

West
(n ¼ 149,485)

Mean (SD) 53.5 (38.0) 58.3 (42.3) 35.6 (21.7) 73.7 (36.6) 46.9 (40.3)
Minimum 6.3 17.8 6.3 18.9 9.6
First quartile 26.6 33.7 19.6 42.9 18.1
Second quartile 41.4 46.2 28.9 66.2 27.4
Third quartile 70.3 62.9 43.3 100.6 62.2
Maximum 265.7 265.7 143.9 221.6 232.0

Counties � 148 Bq/m3 (%) 3.1 3.7 0.0 7.0 2.9
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years smoked squared (current and former smokers), age
started smoking less than 18 years (current and former
smokers), passive smoking (hours), quintiles of vegeta-
ble/fruit/fiber and fat intake, occupational exposures
(asbestos, chemicals/acids/solvents, coal or stone dusts,
coal tar/pitch/asphalt, formaldehyde, and diesel engine
exhaust), as well as a previously developed "occupational
dirtiness index" specificallydesigned for theCPS-II cohort
(5, 17, 30). To adjust for potential confounding by geo-
graphy, results were also adjusted for state of residence at
enrollment. Potential confounding by previous lung dis-
ease, a related occupational "lung carcinogen index" (17,
30), and alternate adjustments for cigarette smoking status
were examined. Further the potential confounding influ-
ence of various sociodemographic ecological variables
and sulfate air pollution concentrationswas also assessed.
Because radonexposures experienced from5 to 25years in
the past are thought to bemost relevant for lung cancer (4),
results were also examined in individuals who reported
living in their same neighborhood for at least the past 5
years at enrollment. The functional form of the relation-
ship between residential radon and lung cancer mortality
was assessed by the supremum test (31).

Effect modification was assessed on both the additive
andmultiplicative scales. On the additive scale, estimates
of the relative excess risk due to interaction, attributable
proportion, and synergy index (and associated 95% CIs)
were calculated according to the "MOVER" method for
the analysis of 4 � 2 tables (32). On the multiplicative
scale, interaction terms between radon and each risk
factor were entered into proportional hazards models.
Two-sided P values were calculated to assess the signifi-
cance of the interaction term by using the likelihood ratio
statistic. To assess the impact of attained age, time-depen-
dent variables were constructed by allowing participants

Table 2. Distribution (n, %) of selected partici-
pant characteristics at enrollment (1982), CPS-
II cohort, United States

Characteristic n (%) Mean (SD)
radon (Bq/m3)

Age, y
<40 37,262 (4.6) 50.1 (35.4)
40–49 173,768 (21.4) 54.0 (37.9)
50–59 297,108 (36.6) 54.2 (38.5)
60–69 213,231 (26.3) 53.1 (38.0)
70–79 76,633 (9.4) 52.4 (37.5)
�80 13,959 (1.7) 51.9 (36.9)

Race
White 770,352 (94.9) 54.2 (38.2)
Black 29,832 (3.7) 40.2 (28.3)
Other 11,777 (1.5) 39.3 (32.1)

Sex
Male 362,600 (44.7) 53.8 (38.2)
Female 449,361 (55.3) 53.2 (37.8)

Education
<High school 106,668 (13.1) 55.2 (38.9)
High school 262,853 (32.4) 56.8 (39.5)
�High school 442,440 (54.5) 51.1 (36.6)

BMI, kg/m2

<18.5 13,685 (1.7) 50.3 (36.1)
18.5–24.9 402,003 (49.5) 52.2 (37.2)
25–29.9 299,755 (36.9) 54.6 (38.6)
�30 96,518 (11.9) 55.6 (39.1)

Marital status
Single 25,564 (3.2) 51.7 (36.7)
Married 691,267 (85.1) 54.1 (38.2)
Other 95,130 (11.7) 49.7 (36.0)

Cigarette
smoking status
Never 375,087 (46.2) 55.5 (39.0)
Current 152,033 (18.7) 51.5 (36.4)
Former 203,253 (25.0) 51.2 (36.9)
Pipe/cigar only 81,588 (10.1) 53.4 (37.9)

Passive smoking
Yes 512,908 (63.2) 53.9 (38.4)
No 299,053 (36.8) 53.2 (37.7)

Vegetable/fruit/
fiber consumptiona

First quintile 135,142 (16.6) 52.9 (37.8)
Second quintile 148,206 (18.2) 53.7 (37.9)
Third quintile 152,650 (18.8) 54.0 (38.1)
Fourth quintile 157,772 (19.4) 54.0 (38.4)
Fifth quintile 150,677 (18.6) 53.8 (38.5)

Fat consumptiona

First quintile 139,237 (17.2) 50.4 (36.9)
Second quintile 148,677 (18.3) 52.6 (37.8)
Third quintile 151,545 (18.7) 54.2 (38.6)
Fourth quintile 152,749 (18.8) 55.1 (38.6)
Fifth quintile 152,239 (18.8) 55.9 (38.5)

Characteristic n (%) Mean (SD)
radon (Bq/m3)

Industrial exposures
Yes 166,660 (20.5) 55.5 (39.4)
No 645,301 (79.5) 53.0 (37.6)

Occupational
dirtiness indexa

Level 0 394,828 (48.6) 52.3 (37.4)
Level 1 110,177 (13.6) 53.2 (37.4)
Level 2 90,595 (11.2) 52.1 (37.6)
Level 3 38,461 (4.7) 53.4 (38.1)
Level 4 66,029 (8.1) 62.9 (42.1)
Level 5 36,240 (4.5) 54.3 (38.5)
Level 6 9,525 (1.2) 57.6 (39.0)

aDoes not sum to total due to missing data.

Table 2. Distribution (n, %) of selected partici-
pant characteristics at enrollment (1982), CPS-II
cohort, United States (Cont'd)
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to be included in the risk set at each death time only if
they met the attained age criteria for the model (<70, 70–
79, or �80 years). The proportional hazards assumption
was tested by assessing the significance of an interaction
term between radon and follow-up time.

Finally, sensitivity analyses of the main findings were
undertaken using generalized relative risk models for
survival data (33), and using a random-effects Cox model
originally developed for air pollution research in the CPS-
II cohort (18, 34). General relative risk models for survival
time data were fitted to compare relative risk estimates
obtained from linear versus log-linear models using SAS
PROC NLP (33). For each lung cancer death, a risk set
consisting of all at-risk controls was constructed, and
matched according to the stratification criteria of the
North American combined analysis of residential radon
case–control studies (10, 11): 5-year age groups, sex,
cigarettes smoked per day (never smoker, 1–9, 10–19,
20–29,�30), duration of cigarette smoking (never smoker,
1–24, 25–34, 35–44, �45 years), and state of residence.
Analyses were also repeated using the stratification cri-
teria of the European combined analysis (8, 9): 5-year age
groups, sex, smoking [never smokers, current smokers’
age started smoking (<15, 15–17, 18–20, �21 years) and
cigarettes per day (<15, 15–24, �25), former smokers’
amount smoked (<15, 15–24, �25 cigarettes per day)
and years smoked (<10, �10)], and state of residence.

All analyses were conducted by SAS version 9.2 (35)
and our random-effects Cox regression program (18).
Ethics approval was obtained from the Ottawa Hospital
Research Ethics Board.

Results

Table 1 presents the distribution of mean county-level
residential radon concentrations by region (LBL data).
Overall, mean concentrations ranged from 6.3 to 265.7
Bq/m3 (1 pCi/L ¼ 37 Bq/m3) with an average value (SD)
of 53.5 (38.0) Bq/m3. Mean county-level residential radon
concentrations were higher in the Northeast and the
Midwest with the lowest concentrations observed in
the South. Mean radon concentrations exceeded the
EPA guideline value in 3.1% of counties.

Table 2 presents the distribution of selected CPS-II
participant characteristics at enrollment (1982). The
majority of participants were between 40 and 69 years
of age, had more than a high school education, and were
never smokers. Mean county-level residential radon con-
centrations varied by participant characteristics includ-
ing race and cigarette smoking status, where higher mean
radon concentrations were observed inwhite participants
and in never smokers as compared with black partici-
pants or ever smokers.

Table 3 presents adjusted HR (95% CI) for lung cancer
mortality in relation to mean county-level residential
radon concentrations. In the final fully adjusted model
(2), lung cancer risk increased with increasing categorical
radon concentrations. There was no significant departure

from a linear relationship (P ¼ 0.23), and a significant
positive linear trend was observed (P ¼ 0.02). A HR of
1.15 (95% CI, 1.01–1.31) was observed for lung cancer
mortality per 100 Bq/m3 increase in radon. Participants in
counties with mean radon concentrations above the EPA
guideline value (148 Bq/m3) experienced a 34% (95% CI,
7–68) increase in risk for lung cancer death relative to
those below the guideline value. Figure 1 shows adjusted
HRs (95% CIs) for lung cancer mortality according to
continuous and categorical indicators of radon concen-
trations. There was no evidence that the proportional
hazards assumption was violated (P > 0.05).

Mean county-level residential radon concentrations
were weakly correlated with sociodemographic ecologi-
cal variables (r ¼ 0.12 to �0.29). Results strengthened
somewhat with the inclusion of 4 ecological variables in
the model that were each independently associated with
lung cancer mortality (HR/100 ¼ 1.18; 95% CI, 1.04–1.35;
Supplementary Table 1). Results were virtually
unchanged with the inclusion of sulfate air pollution
concentrations in the model in the 439,297 participants
with data available on both radon and sulfate (r ¼ 0.06;
HR/100 ¼ 1.15; 95% CI, 0.97–1.37).

Table 4 presents adjustedHRs for lung cancermortality
stratified according to selected participant characteristics
at enrollment. There was no significant effect modifica-
tion observed by cigarette smoking status, passive smok-
ing, or sulfate air pollution concentrations on the additive
(Supplementary Table 2) or multiplicative scale (Table 4).
However, results did vary by geographic region (P ¼
0.004), with a significant positive association observed
between radon and lung cancer mortality in the North-
east only (HR/100 ¼ 1.31; 95% CI, 1.12–1.53; Table 4;
Supplementary Figure 1). Results also strengthened
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Figure 1. Adjusted HRs (95% CIs) for lung cancer mortality in relation
to continuous (solid line, 95% CIs dashed lines) and categorical (reference
category < 25 Bq/m3) indicators of mean county-level residential radon
concentrations (LBL) at enrollment (1982), follow-up (1982–1988),
CPS-II cohort, United States.
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somewhat when restricting the analysis to individuals
who reported living in the same neighborhood for at least
the past 5 years at enrollment (HR/100 ¼ 1.19; 95% CI,
1.04–1.36).
Figure 2 presents a comparison of the exposure–

response relationship using linear or log-linear general
relative risk models. Little difference was observed.
Results were also insensitive to the inclusion of clustering
at the ZIP code–, county-, or state-level in the model with
random effect variances being negligible (�10�6).
Mean county-level residential radon concentrations

were strongly correlated between the LBL and Cohen
[mean (SD) ¼ 54.4 (32.5) Bq/m3] data sources (r ¼ 0.89),
and similar findings were observed for lung cancer
mortality (Supplementary Table 3). Using Cohen’s data,
in the final fully adjusted model (2), a HR of 1.22 (95%
CI, 1.05–1.42) was observed per 100 Bq/m3 increase in
radon. Results were robust to the inclusion of various
county-level sociodemographic risk factors compiled by
Cohen (refs. 25, 26; results not shown). Results were also
found to vary by geographic region (Pinteraction ¼ 0.03)
with a significant positive association observed in the
Northeast only (HR/100 ¼ 1.37; 95% CI, 1.13–1.67). On
restriction of the analysis to participants who lived
in 1,515 counties with data available from both the
LBL and Cohen, overall HRs per 100 Bq/m3 radon were

1.19 (95% CI, 1.04–1.36) and 1.22 (95% CI, 1.05–1.42),
respectively.

Discussion

Overall, the findings of this large prospective study
showed a positive association between residential radon
and lung cancer mortality. A 15% increase in the risk of
lung cancer mortality was observed per 100 Bq/m3

increase in radon across the United States; in the North-
east the increase was 31%. Participants in counties with
mean radon concentrations above the EPA guideline
value (148 Bq/m3) experienced a 34% increase in risk
of lung cancer mortality relative to those below the
guideline value. Findings were robust to adjustment of
a variety of sociodemographic ecological risk factors and
sulfate air pollution concentrations. Results showed no
effect modification by cigarette smoking status or other
risk factors on either the additive or multiplicative scales.
Results were similar using either the radon data from the
LBL (23, 24) or Cohen’s data (25, 26, 27).

A major limitation of this study is the use of an area-
based (county) indicator of residential radon concentra-
tions. Previous studies using area-based indicators of
residential radon have tended to follow an ecological
design, linking mean county-level residential radon

Table 3. Adjusted HRs (95% CIs) for lung cancer mortality in relation to mean county-level residential
radon concentrations (LBL; Bq/m3) at enrollment (1982), follow-up 1982–1988, CPS-II cohort, United
States

Radon concentration
(Bq/m3)

Lung cancer
deaths

Person-years Death
ratea

Minimally
adjusted
HR (95% CI)b

Fully adjusted
HR (1) (95% CI)c

Fully adjusted
HR (2) (95% CI)d

Categorical
<25 856 1,062,216.23 77.79 1.00 1.00 1.00
25-<50 1,312 1,767,001.74 75.59 0.97 (0.89–1.06) 0.96 (0.88–1.04) 1.01 (0.90–1.13)
50-<75 632 863,881.31 74.09 0.96 (0.86–1.06) 1.00 (0.90–1.10) 1.03 (0.89–1.19)
75-<100 274 428,430.94 64.47 0.82 (0.72–0.94) 0.90 (0.79–1.03) 0.97 (0.82–1.16)
100-<150 332 526,638.30 62.49 0.80 (0.70–0.90) 0.97 (0.85–1.10) 1.15 (0.95–1.39)
150-<200 53 62,903.34 83.53 1.07 (0.81–1.41) 1.27 (0.96–1.68) 1.53 (1.10–2.13)
�200 34 42,084.48 82.20 1.07 (0.76–1.50) 1.24 (0.88–1.75) 1.38 (0.95–2.00)
Ptrend

e 0.006 0.44 0.02
EPA guideline value

<148 3,396 4,631,071.50 73.31 1.00 1.00 1.00
�148 97 122,084.84 80.82 1.10 (0.90–1.34) 1.24 (1.02–1.52) 1.34 (1.07–1.68)

Continuous
per 100 Bq/m3 3,493 4,753,156.34 73.49 0.88 (0.80–0.96) 1.03 (0.94–1.13) 1.15 (1.01–1.31)

aPer 100,000 person-years, age-standardized to the age distribution of the entire cohort.
bAge, race, gender stratified.
cAge, race, gender stratified and adjusted for education, marital status, BMI, BMI squared, cigarette smoking status, cigarettes per
day, cigarettes per day squared, duration of smoking, duration of smoking squared, age started smoking, passive smoking,
vegetable/fruit/fiber consumption, fat consumption, industrial exposures, occupation dirtiness index.
dAs footnote c above, but also state stratified.
eTests for linear trend used Wald c2 tests, with categorical medians modeled as ordinal variables.
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Table 4. Adjusteda HRs (95% CIs) for lung cancer mortality per 100 Bq/m3 mean county-level residential
radon concentrations (LBL) at enrollment (1982) stratified by selected risk factors, effect modification
multiplicative scale, follow-up 1982–1988, CPS-II cohort, United States

Characteristic n Lung cancer deaths Fully adjusted HR (2) (95% CI) P

Age, y
<65 633,932 1,922 1.12 (0.95–1.33)
�65 178,029 1,571 1.13 (0.93–1.38) 0.16

Attained ageb, y
<70 615,247 2,228 1.18 (1.01–1.38)
70–79 153,901 1,033 1.03 (0.80–1.32)
�80 42,813 232 0.88 (0.51–1.53) 0.56

Race
White 770,352 3,332 1.14 (1.00–1.30)
Other 41,609 161 1.77 (0.79–3.94) 0.10

Sex
Male 362,600 2,423 1.14 (0.98–1.33)
Female 449,361 1,070 1.17 (0.93–1.48) 0.59

Education
<High school 106,668 946 1.20 (0.93–1.56)
High school 262,853 1,115 0.95 (0.74–1.20)
>High school 442,440 1,432 1.33 (1.09–1.64) 0.64

BMI, kg/m2

18.5–24.9 408,322 1,938 1.20 (1.00–1.43)
25–29.9 302,762 1,208 1.12 (0.90–1.39)
�30 87,192 226 1.11 (0.67–1.84) 0.69

Marital Status
Married 691,267 2,911 1.11 (0.96–1.27)
Other 120,694 582 1.35 (0.96–1.90) 0.69

Cigarette Smoking
Never Smoker 375,087 271 0.77 (0.47–1.25)
Current 152,033 1,792 1.20 (1.00–1.44)
Former 203,253 941 1.09 (0.84–1.41) 0.66

Cigarettes/dayc

1–19 128,212 479 1.14 (0.80–1.62)
20–29 124,600 1,042 1.23 (0.97–1.57)
�30 102,474 1,212 1.15 (0.92–1.45) 0.67

Years smokedc

1–34 250,099 723 1.11 (0.83–1.48)
35–44 74,434 1,040 1.25 (0.99–1.59)
�45 30,753 970 1.21 (0.93–1.57) 0.59

Years since quittingc

0 158,122 1,856 1.20 (1.01–1.44)
1–9 57,601 434 1.06 (0.71–1.59)
�10 139,560 443 1.31 (0.90–1.91) 0.26

Age started smokingc, y
<18 140,360 1,397 1.26 (1.02–1.57)
�18 214,926 1,825 1.14 (0.93–1.40) 0.55

Passive smoking in homed

Yes 54,532 24 1.20 (0.22–6.46)
No 320,552 247 0.72 (0.43–1.21) 0.76

Vegetable/fruit/fiber consumption
First tertile 313,799 1,766 1.08 (0.88–1.34)
Second tertile 243,922 965 1.26 (0.98–1.60)

(Continued on the following page)
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concentrations with county-level lung cancer death
rates with conflicting results observed. In the ecological
study of Cohen (25), a strong negative association
between radon and lung cancer was reported. However,
because there was a negative correlation between smok-
ing prevalence and radon concentrations at the ecolo-
gical level, such studies are subject to confounding by
cigarette smoking (36, 37). There are also other potential
limitations for the studies such as cross-level bias (36,
37). Here, mean county-level residential radon concen-

trations were linked to individuals in the CPS-II cohort
and with detailed adjustment for a variety of indivi-
dual-level risk factors, including cigarette smoking;
positive associations between radon and lung cancer
mortality were observed.

Mean county-level residential radon concentrations
were linked to CPS-II participants as indicators of historic
residential radon exposure. Radon data were estimated
either on the basis of available short- and long-term
monitoring data, aswell as a variety of geological, meteor-

Characteristic n Lung cancer deaths Fully adjusted HR (2) (95% CI) P

Third tertile 254,240 762 1.03 (0.78–1.36) 0.55
Fat consumption

First tertile 299,311 1,319 1.11 (0.87–1.42)
Second tertile 258,329 1,005 1.12 (0.87–1.43)
Third tertile 254,321 1,169 1.26 (1.00–1.59) 0.94

Industrial exposures
Yes 166,660 920 1.05 (0.82–1.35)
No 645,301 2,573 1.17 (1.01–1.37) 0.28

Occupational dirtiness
Yes 351,027 1,915 1.04 (0.86–1.27)
No 394,828 1,578 1.24 (1.02–1.50) 0.33

Asthma
Yes 36,679 157 1.12 (0.43–2.93)
No 775,282 3,336 1.15 (1.01–1.31) 0.40

Hay fever
Yes 97,141 254 1.35 (0.79–2.32)
No 714,820 3,239 1.12 (0.98–1.28) 0.56

Chronic bronchitis/emphysema
Yes 39,016 611 0.99 (0.68-1.43)
No 772,945 2,882 1.15 (1.00-1.33) 0.25

Regione

Northeast 170,281 710 1.31 (1.12–1.53)
South 257,243 1,246 0.95 (0.73–1.24)
Midwest 234,952 954 1.07 (0.89–1.27)
West 149,485 583 0.83 (0.65–1.04) 0.004

Sulfate air pollutionf

<6.4 mg/m3 221,453 897 1.29 (0.94–1.77)
�6.4 mg/m3 217,844 946 1.08 (0.88–1.32) 0.57

aAge, race, gender, state stratified and adjusted for education, marital status, BMI, BMI squared, cigarette smoking status, cigarettes
per day, cigarettes per day squared, duration of smoking, duration of smoking squared, age started smoking, passive smoking,
vegetable/fruit/fiber consumption, fat consumption, industrial exposures, occupation dirtiness index where appropriate.
bRace, gender, state stratified and adjusted for cigarette smoking status, cigarettes per day, cigarettes per day squared, duration of
smoking, duration of smoking squared, age started smoking only.
cEver smokers. Additional participants with missing information were excluded for years since quitting. P values calculated with never
and ever smokers.
dNever smokers.
eHRs and 95% CIs by region unadjusted for state.
fParticipants with missing sulfate information excluded. Cutpoints were based on median participant sulfate value.

Table 4. Adjusteda HRs (95% CIs) for lung cancer mortality per 100 Bq/m3 mean county-level residential
radon concentrations (LBL) at enrollment (1982) stratified by selected risk factors, effect modification
multiplicative scale, follow-up 1982–1988, CPS-II cohort, United States (Cont'd)
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ologic, andhousingdata (LBL), or on the basis of a series of
aggregated short-term screeningmeasurements from sev-
eral different sources normalized to the data of the U.S.
NRRS (Cohen). Estimates of radon concentrations in indi-
vidual homes are subject to a number of sources of uncer-
tainty, including detector measurement error, variation
due to detector placement, and changes in radon concen-
trations over time (seasonal and year-to-year variability;
refs. 4, 38–43). However, these measurement errors are
most likely to be nonsystematic. Mean county-level resi-
dential radon concentrations are also subject to sampling
error (44). Residential radon concentrations can exhibit
considerable variability due to individual housing char-
acteristics (buildingmaterials, presenceof a basement, age
of construction, ventilation, water supply), soil perme-
ability, and underlying geology (4, 7, 42, 45). The extent to
which ecologic indicators of residential radon exposures
are representative of the exposure experience of indivi-
duals in the CPS-II cohort is also not known.

Although it is difficult to predict the total potential
cumulative impact of such errors on the results observed
in the current study, the observed relative risk estimates
may be subject to some degree of downward bias (38, 46,
47). Mallick and colleagues (48) examined the impact of
adjusting for plausible levels of exposure measurement
error associated with ecological measures of ambient air
pollution under a cohort design and found the relative
risk estimates were subject to downward bias. Jerrett
and colleagues (49) observed that air pollution mortality
relative risk estimates increased by nearly 3-fold in

research in the CPS-II cohort examining within- as
opposed to between-city contrasts in fine particulate
matter concentrations.

Two studies (50, 51) have directly examined the impact
of using either individual (measured in subject’s homes)
or ecological (aggregating individual-level measures)
indicators of residential radon concentrations in case–
control studies. Findings using ecological measures
of radon resulted in notably less precise relative risk
estimates, compared with those based on individual
measures of radon. Results using ecological radon mea-
sures also required the inclusion of an additional indi-
cator for geographical location, which takes into account
broad spatial patterns in both radon concentrations and
risk factors for lung cancer, for compatibility with results
using individual data.

Despite these uncertainties, our findings are consistent
with results obtained from combined analyses of resi-
dential case–control studies (8–11). In North America,
ERR per 100 Bq/m3 radon were found to range from 11%
(95% CI, 0–28) overall to 21% (95% CI, 3–52) in subjects
with complete historic radon data and limited residential
mobility. In Europe, results ranged from 8% (95% CI,
3–16) overall to 16% (95% CI, 5–31) when adjusting for
exposure measurement error. A pooled analysis of 2
residential radon case–control studies conducted in
China reported an ERR of 13% (95% CI, 1–36) at 100
Bq/m3 (52). A recent prospective study in Spain also
reported elevated, although imprecisely determined,
lung cancer risks for subjects with higher residential
radon concentrations; however, only 5 lung cancer cases
were observed in this cohort (12).

Results for the United States as a whole were largely
due to a significant positive association between radon
and lung cancer observed in the Northeast. Although
this could conceivably be an artifact of the choice of
administrative data boundaries, this finding may also
be due to higher residential radon concentrations in the
Northeast and other factors unaccounted for in the
analysis including possible regional differences in time
spent at home (53). Although there is no information on
time-activity patterns for characterizing time spent at
home for individuals in the CPS-II cohort, results from
the U.S. National Human Activity Pattern Survey
showed that time spent in a residence was consistent
across all 10 regions of the United States (54). However,
the Iowa Radon Lung Cancer Study reported that time
spent at home varied by age from a low of 69.4% in
women ages 50 to 59 years up to 81.6% in women ages
80 years or more (55); differences in time spent at home
were also observed according to number of children in
this study.

Updated information on neither cigarette smoking
status nor residential mobility from enrollment was avail-
able for individuals in the full CPS-II cohort. In an
attempt to control for changes in cigarette smoking over
time, a major risk factor for lung cancer, it was decided a
priori to restrict the follow-up time period for the analysis
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Figure 2. Comparison of linear and log-linear general relative risk models
for the association between lung cancer mortality and mean county-level
residential radon concentrations (LBL) at enrollment (1982), follow-up
(1982–1988), CPS-II cohort, United States. According to the stratification
criteria of Krewski and colleagues (10, 11) little difference in relative risk
estimates obtained from either a linear (ERR ¼ 1 þ 0.00121 X; dotted line)
or log-linear [Cox regression analysis; RR ¼ exp(0.00119 X); solid line]
model was observed. Relative risk estimates were also similar using the
stratification criteria of Darby and colleagues [refs. 8, 9; ERR¼ 1þ 0.00108
X, RR ¼ exp(0.00109 X)].
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to the first 6 years of follow-up only (19). There was no
detailed information on address history prior to enroll-
ment; however, study participants did report living in
their current neighborhood at enrollment for a mean (SD)
of 19.4 (14.1) years. Radon–lung cancer associations
strengthened somewhat when restricting the analysis
to individuals who reported living in the same neighbor-
hood for at least the past 5 years (HR/100 ¼ 1.19; 95% CI,
1.04–1.36). No information was available on lung cancer
histologic subtype.
Mean county-level residential radon concentrations for

black individuals in the CPS-II cohort (mean ¼ 40.2 Bq/
m3) tended to be lower than those for white individuals
(mean ¼ 54.2 Bq/m3). This could be because of the
tendency for black individuals in the cohort to live in
ZIP codes that were more highly urbanized, where radon
concentrations tend to be lower (8, 9). Urban areas also
tend to have higher smoking rates (8, 9).
Few studies have examined potential interrelation-

ships between residential radon and other inhalable
environmental agents. Lagarde and colleagues (56)
reported that residential radon may be a more impor-
tant risk factor for lung cancer in never smokers with a
smoking spouse. However, in the combined analysis of
European case–control studies, lung cancer risk did not
vary according to spousal smoking status (8, 9). In
China, increased lung cancer risk associated with radon
did not vary according to level of indoor smokiness
(52). Brauner and colleagues (57) reported that the
association between residential radon and childhood
leukemia in Denmark strengthened in the presence of
exposure to traffic-related air pollution, although
further research is needed to clarify this finding. Here

the association between county-level residential radon
concentrations and lung cancer mortality did not vary
according to exposure to passive cigarette smoke or
ambient sulfate concentrations.

In conclusion, this large prospective study showed
positive associations between ecological indicators of
residential radon and lung cancer mortality. Current data
suggest that residential radon is the second leading cause
of lung cancer after tobacco smoking (3). The results of
this study further support the need for continued efforts
to reduce radon concentrations in homes to the lowest
possible level (58).
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