Lung Cancer, Race, and a CYP1A1 Genetic Polymorphism

Peter G. Shields, Neil E. Caporaso, Roni T. Falk, Haru Sugimura,† Glenwood E. Trivers, B. F. Trump, Robert N. Hoover, Ainsley Weston, and Curtis C. Harris‡

Laboratory of Human Carcinogenesis, Division of Cancer Etiology [P. G. S., H. S., G. E. T., A. W., C. C. H.], and Biostatistics and Epidemiology Program [N. E. C., R. T. F., R. N. H.], Division of Cancer Etiology, National Cancer Institute, NIH, Bethesda, Maryland 20892, and Department of Pathology [B. F. T.], University of Maryland, Baltimore, Maryland 21201

Abstract
The assessment of human cancer risk using molecular epidemiological techniques involves determining the relative contributions of inherited and acquired genetic predispositions, in the context of environmental exposures. Recently described genetic polymorphisms for CYP1A1, a gene involved in the metabolic activation of polycyclic aromatic hydrocarbons, have been associated with lung cancer risk in a Japanese population. We report herein findings from a United States case-control study of lung cancer (56 cases; 48 controls). The polymerase chain reaction followed by an MspI restriction enzyme digestion was used to analyze constitutive DNA but no association between the restriction fragment length polymorphism and lung cancer risk was found (odds ratio, 0.7; 95% confidence interval, 0.3–1.6). Analysis of genotype by cumulative smoking status did not reveal an elevated risk among lesser or greater smokers. The presence of the CYP1A1 MspI site-present allele, which was previously found to be associated with Japanese lung cancer risk, was statistically increased in African compared to Caucasian Americans (odds ratio, 2.9; 95% confidence interval, 1.2–2.7). When stratified by race, however, no association between case status and the polymorphism was observed, but the small number of study subjects within each racial group limited the statistical power. Larger studies are required to evaluate the risk of the CYP1A1 MspI polymorphism in African Americans.

Introduction
Human cancer risk assessment using molecular epidemiological techniques is rapidly advancing (1). Determinants of cancer risk such as metabolic activation and detoxification, DNA damage, and DNA repair are partly governed by inheritance whereby wide interindividual variation has been documented (2). PAHs,† ubiquitous in the environment, are a class of suspect human carcinogens in which interindividual differences in their metabolic activation have been extensively studied. Laboratory animal studies and mutagenesis assays support a role for PAHs in human carcinogenesis (3, 4) as do epidemiological studies of lung and skin cancer (5). Cytochrome P450 CYP1A1, the gene that codes for AH4, initiates a multienzyme pathway that activates PAHs to highly electrophilic metabolites, (4, 6) which in turn can activate the HRAS protooncogene (7). Human lung and placent al AH4 activity can vary up to several thousand-fold and is induced by exposure to PAH, tobacco smoke, dietary factors, and other exposures (8–12). The induction process itself may have a genetic component (13) and AH4 activity is higher in lung cancer cases compared to controls (14–16). These activity assays, however, are technically difficult so that facile genotyping assays, which reflect AH4 inducibility or activity, would likely enhance individual cancer risk assessments.

Two closely associated polymorphisms at the CYP1A1 gene locus have been identified (17, 18). A RFLP revealed by an MspI restriction enzyme digestion, located 3' to the CYP1A1 structural gene, was described first (17). The second, located in exon 7 and not an RFLP, is responsible for an isoleucine to valine substitution in the protein catalytic region that affects function (18). Microsomes of yeast cells transfected with the exon 7 mutant or wild-type CYP1A1 resulted in different activities upon exposure to benzo[a]pyrene; the former having a higher metabolic activation rate.‡ The absolute quantity of AH4 protein, however, was unchanged. In a molecular epidemiological study of Japanese, the presence of the site-present MspI RFLP was associated with lung cancer (17); the OR was 3 for all cancer patients and 4.6 for squamous cell cancer patients. A limitation of this study was the great difference in lifetime smoking rates and ages in cases versus controls. In a follow-up study, the association was later found to be stronger among persons who smoked less (19). In contrast to the Japanese study, Norwegian (20) and Finnish (21) lung cancer case-control studies failed to reveal an association of the CYP1A1 genotype with cancer. Whether this reflects a difference in study design or a characteristic of the study population remains to be determined. We present herein results from a United States case-control study designed to explore genetic risk factors for lung cancer.

Methods
Genotyping for CYP1A1. Southern blot analysis was performed by enzymatically digesting DNA (5 μg) with MspI

Received 1/5/93; revised 5/6/93; accepted 5/6/93.

1 Present address: First Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan 431–31.
2 To whom requests for reprints should be addressed.
3 Abbreviations used are: PAHs, polycyclic aromatic hydrocarbons; PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; CYP, cytochrome P450; OR, odds ratio; AH4, aryl hydrocarbon hydroxylase; CI, confidence interval; SDS, sodium dodecyl sulfate; SSC, standard saline citrate.

according to the manufacturer's instructions (Pharmacia, Piscataway, NJ). The DNA was then subjected to agarose gel (0.8%) electrophoresis. The gels were treated with NaOH (400 mM) and NaCl (0.6 mM) and neutralized with NaCl (1.5 mM) and Tris-HCl (500 mM; pH 8.0). The DNA was immobilized on nylon membranes (Bio-Trace-Gelman; Ann Arbor, MI) under vacuum and hybridized with a CYP1A1 complementary DNA probe (kindly provided by Dr. F. Gonzalez) under stringent conditions (1% dextran sulfate, 1 mM NaCl, 1% SDS at 65°C for 16 h). The membranes were washed with 2 x SSC twice (room temperature; 15 min), 2 x SSC with 1% SDS twice (65°C; 25 min), and then 0.1 x SSC with 1% SDS (room temperature; 10 min). X-ray films (Eastman Kodak, Rochester, NY) were exposed to the membranes for the detection of restriction fragments, the sizes of which were determined by comparison with λ DNA enzymatically digested with BstfI.

PCR amplification (0.5 µg) was performed using primer C44 (5'-TAGGAGTCTTGTCTCATGCCT-3') located at 447-bases on primer 1 (5'-AGTCTGTTTG-CGCT-3') at 129-150 bases primer C47/C44 on a 308-base pair fragment for primer pair C47/C44 was used in most cases except when product could not be obtained. In those cases, primer pair 1/C44 was successful (n = 23). There was complete concordance in genotyping for the two primer pairs. Reactions were carried out in Tris-HCl (10 mM; pH 8.3), KCl (50 mM), MgCl2 (3 mM), deoxyribonucleotide-triphosphates (1.875 µM; Pharmacia), primer (12.5 µM each), and Taq polymerase (5 units; Perkin Elmer, Norwalk, CO). Amplification occurred (DNA Thermal Cycler; Perkin Elmer) by denaturing at 94°C for 4 min, followed by 35 cycles of 94°C for 60 s, 52°C for 60 s and 72°C for 60 s, and a final extension step of 72°C for 4 min. PCR amplification product (339 base pairs for primer pair C47/C44 and 308 base pairs for primer pair 1/C44; 80 µl) was filtered purified (Centricron 100; Amicon, Beverly, MA) and an aliquot (21 µl) was subjected to an Msp1 restriction enzyme digestion (30 units) in buffer (10 mM Tris-HCl, pH 7.5-10 mM; MgCl2-KCl 10 mM, 0.1% SDS, 1× TBE, 5% β-mercaptoethanol (1 mM), and bovine serum albumin (0.1 mg/ml) at 37°C for 2 h. Additionally, Msp1 enzyme was added (15 units) and the sample was incubated for an additional 2 h. Samples were then analyzed by agarose gel (2.2%) electrophoresis. The wild type allele is resistant to the Msp1 restriction enzymes, yielding either a 339-base pair fragment for primer pairs C47/C44 or a 308-base pair fragment for primer pair 1/C44. Alleles sensitive to the Msp1 in restriction enzyme is identified by 134- and 205- or 103- and 205-base pair fragments, respectively.

To validate the PCR genotyping method, Southern blot analysis was used as a correlating method in a subset of individuals. DNA samples were obtained from a Baltimore, MD, autopsy donor program and also from octogenarian Japanese (n = 95). All samples were analyzed by Southern blot and samples representing all these possible genotypes were chosen. These samples were then analyzed by PCR and Msp1 restriction digestion. For the case-control study, the PCR method was subsequently used to analyze WBC DNA.

Subjects. A case-control study of lung cancer was conducted between 1985 and 1989, as previously described (22). A total of 188 subjects were enrolled, of whom 104 had DNA suitable for genotyping. This subset was similar with regards to age, gender, race, and smoking history as the larger sample. The cases had newly diagnosed and pathologically documented primary lung cancer identified at participating hospitals in Baltimore, MD. Two hospital-based control groups were selected. The first group (n = 31) consisted of outpatients with chronic obstructive pulmonary disease, defined by the presence of abnormal pulmonary function (Forced Expiratory Volume 1 % ≤ 75%) or with asthma and a history of greater than 40 pack-years of tobacco smoking (number of packs/day × the number of consumption years). The second control group (n = 15) was patients with cancer at anatomical sites other than lung or bladder. All study subjects completed an extensive questionnaire administered by a trained interviewer, covering medical, residential, occupational, and smoking history.

Statistical Analysis. OR estimates of the relative risk with 95% confidence intervals were used to describe the relation of lung cancer to CYP1A1 genotype (23, 24). Logistic regression models were used to adjust for age, race, gender, and other variables when sufficient numbers were available (25, 26). Crude ORs were virtually unchanged by adjustment for these factors; therefore, unless indicated, only crude ORs are presented. Gene frequencies and tests for Hardy-Weinberg equilibrium were calculated (27).

Results

In order to validate the assay, Southern analysis was performed on DNA samples from Japanese and United States individuals unrelated to the case-control study (n = 95). Electrophoretic analysis revealed two fragments hybridizing to the CYP1A1 probe at 1.9 and 2.3 kilobases as previously reported (17) (Fig. 1A). A subset of individuals (n = 24; 2 homozygote site absent, 5 heterozygotes and 17 homozygote site present) were then chosen for analysis by PCR and RFLP. There was 100% concordance between the PCR and Southern blot methods. In the 95 subjects, the allelic frequency for the Msp1 site present allele was found to be 10% in Americans and 29% in octogenenarian Japanese.

DNA samples from 104 case-control study subjects were amplified and subjected to Msp1 restriction enzyme digestion (Fig. 1B).

The characteristics of these individuals are listed in Table 1. The cases were slightly older than controls. Control subjects tended to have greater smoking histories, reflecting the study design favoring smokers by selecting persons with chronic obstructive pulmonary disease. Among the controls, the allelic frequency for the CYP1A1 polymorphism met Hardy-Weinberg equilibrium with African and Caucasian Americans evaluated separately. The allelic frequency for the site present allele was 10% in African and 29% in octogenarian Japanese.

DNA samples from 104 case-control study subjects were amplified and subjected to Msp1 restriction enzyme digestion (Fig. 1B).

The characteristics of these individuals are listed in Table 1. The cases were slightly older than controls. Control subjects tended to have greater smoking histories, reflecting the study design favoring smokers by selecting persons with chronic obstructive pulmonary disease. Among the controls, the allelic frequency for the CYP1A1 polymorphism met Hardy-Weinberg equilibrium with African and Caucasian Americans evaluated separately. The allelic frequency for the site present allele was 10% in African and 29% in octogenarian Japanese.

DNA samples from 104 case-control study subjects were amplified and subjected to Msp1 restriction enzyme digestion (Fig. 1B).

The characteristics of these individuals are listed in Table 1. The cases were slightly older than controls. Control subjects tended to have greater smoking histories, reflecting the study design favoring smokers by selecting persons with chronic obstructive pulmonary disease. Among the controls, the allelic frequency for the CYP1A1 polymorphism met Hardy-Weinberg equilibrium with African and Caucasian Americans evaluated separately. The allelic frequency for the site present allele was 10% in African and 29% in octogenarian Japanese.

DNA samples from 104 case-control study subjects were amplified and subjected to Msp1 restriction enzyme digestion (Fig. 1B).

The characteristics of these individuals are listed in Table 1. The cases were slightly older than controls. Control subjects tended to have greater smoking histories, reflecting the study design favoring smokers by selecting persons with chronic obstructive pulmonary disease. Among the controls, the allelic frequency for the CYP1A1 polymorphism met Hardy-Weinberg equilibrium with African and Caucasian Americans evaluated separately. The allelic frequency for the site present allele was 10% in African and 29% in octogenarian Japanese.

DNA samples from 104 case-control study subjects were amplified and subjected to Msp1 restriction enzyme digestion (Fig. 1B).

The characteristics of these individuals are listed in Table 1. The cases were slightly older than controls. Control subjects tended to have greater smoking histories, reflecting the study design favoring smokers by selecting persons with chronic obstructive pulmonary disease. Among the controls, the allelic frequency for the CYP1A1 polymorphism met Hardy-Weinberg equilibrium with African and Caucasian Americans evaluated separately. The allelic frequency for the site present allele was 10% in African and 29% in octogenarian Japanese.

DNA samples from 104 case-control study subjects were amplified and subjected to Msp1 restriction enzyme digestion (Fig. 1B).

The characteristics of these individuals are listed in Table 1. The cases were slightly older than controls. Control subjects tended to have greater smoking histories, reflecting the study design favoring smokers by selecting persons with chronic obstructive pulmonary disease. Among the controls, the allelic frequency for the CYP1A1 polymorphism met Hardy-Weinberg equilibrium with African and Caucasian Americans evaluated separately. The allelic frequency for the site present allele was 10% in African and 29% in octogenarian Japanese.

DNA samples from 104 case-control study subjects were amplified and subjected to Msp1 restriction enzyme digestion (Fig. 1B).

The characteristics of these individuals are listed in Table 1. The cases were slightly older than controls. Control subjects tended to have greater smoking histories, reflecting the study design favoring smokers by selecting persons with chronic obstructive pulmonary disease. Among the controls, the allelic frequency for the CYP1A1 polymorphism met Hardy-Weinberg equilibrium with African and Caucasian Americans evaluated separately. The allelic frequency for the site present allele was 10% in African and 29% in octogenarian Japanese.

DNA samples from 104 case-control study subjects were amplified and subjected to Msp1 restriction enzyme digestion (Fig. 1B).

The characteristics of these individuals are listed in Table 1. The cases were slightly older than controls. Control subjects tended to have greater smoking histories, reflecting the study design favoring smokers by selecting persons with chronic obstructive pulmonary disease. Among the controls, the allelic frequency for the CYP1A1 polymorphism met Hardy-Weinberg equilibrium with African and Caucasian Americans evaluated separately. The allelic frequency for the site present allele was 10% in African and 29% in octogenarian Japanese.
A Southern blot analysis for CYP1A1 genotyping. A 2.3-kilobase band indicates the wild-type allele while the 1.9-kilobase band indicates the mutant allele. Genotypes are homozygous site-absent (Lanes 1, 2, 6, 8-10), heterozygotes (Lanes 3, 4, 5, 7, and 11) and homozygous site-present (Lanes 3 and 11). DNA is amplified by the polymerase chain reaction and then subjected to Mspl restriction enzyme digestion for CYP1A1 locus (B) yielding either a 308-base pair fragment or 103-and 205-base pair fragments. The genotyping possibilities, therefore, are homozygous site-absent (Lanes 1, 2, and 3) and homozygous site-present (Lanes 7 and 11). PCR is performed without DNA to assess for contamination (Lane 12), bp, base pairs.

Table 1: Distribution of cases and controls according to demographic characteristics

<table>
<thead>
<tr>
<th>Demographics</th>
<th>African American</th>
<th>Caucasian</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n*</td>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>Age (mean)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>64</td>
<td>66</td>
<td>65</td>
</tr>
<tr>
<td>Controls</td>
<td>60</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>27/1</td>
<td>27/1</td>
<td>54/2</td>
</tr>
<tr>
<td>Controls</td>
<td>20/3</td>
<td>25/0</td>
<td>45/3</td>
</tr>
<tr>
<td>Pack-years (mean)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>55</td>
<td>52</td>
<td>55</td>
</tr>
<tr>
<td>Controls</td>
<td>47</td>
<td>73</td>
<td>61</td>
</tr>
</tbody>
</table>

* Numbers in parentheses, 95% confidence intervals. Trend test for overall OR, P = 0.675.

A difference in the genotype frequency between African and Caucasian Americans (combining cases and controls) was evident (Table 5). The former was more likely to be either a heterozygote or homozygous site-present genotype (OR, 2.9; 95% CI, 1.2–7.1). Analysis of cancer risk by CYP1A1 genotype within each racial group still failed to reveal an association (Table 5).

Table 2: Distribution of CYP1A1 genotypes in lung cancer cases and controls

<table>
<thead>
<tr>
<th>Case status</th>
<th>W/W</th>
<th>W/M</th>
<th>M/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases (n = 56)</td>
<td>43</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Controls (n = 56)</td>
<td>33</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>OR (by genotype)</td>
<td>1.0</td>
<td>0.7 (0.3–1.8)</td>
<td>0.5 (0.3–1.6)</td>
</tr>
<tr>
<td>OR (combined genotype)</td>
<td>1.0</td>
<td>0.7 (0.3–1.6)</td>
<td></td>
</tr>
</tbody>
</table>

* W/W, homozygous site-absent; W/M, heterozygote; M/M, homozygous site-present.

Numbers in parentheses, 95% confidence intervals. Trend test for overall OR, P = 0.675.

Table 3: Distribution of CYP1A1 genotypes by lung cancer histology

<table>
<thead>
<tr>
<th>Histology</th>
<th>W/W*</th>
<th>W/M or M/M</th>
<th>OR*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma</td>
<td>14</td>
<td>4</td>
<td>0.6 (0.2, 2.2)</td>
</tr>
<tr>
<td>Squamous cell</td>
<td>20</td>
<td>9</td>
<td>1.0 (0.4, 2.7)</td>
</tr>
<tr>
<td>Large cell</td>
<td>4</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Small cell</td>
<td>5</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Pooled controls</td>
<td>33</td>
<td>15</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* W/W, homozygous site-absent; W/M, heterozygote; M/M, homozygous site-present.

Numbers in parentheses, 95% confidence intervals.

Earlier analyses showed a statistically significant excess of extensive metabolizers of debrisoquine among our lung cancer cases. Although not genetically linked, the CYP2D6 metabolic phenotype was examined in relation to CYP1A1 genotype, but no association was observed. Separately, the risk associated with the CYP1A1 genotype remained relatively unchanged after adjustment for age, race, tobacco use, gender, and debrisoquine phenotype (OR, 0.76; 95% CI, 0.3–2.2 for at least one site-present allele).

Discussion

The results from this lung-cancer case-control of United States individuals do not show a relationship between the CYP1A1 Msp1 polymorphism and lung cancer risk, even when examined by histological subtype or cigarette consumption. We did find an excess frequency of the homozygote site-present allele in African Americans. However, analysis within race still failed to reveal a relationship to lung cancer, perhaps due to the small number of study subjects and thus a limitation in statistical power. These results were consistent with studies of European groups (20, 21) but contrast with those in Japanese (17, 19). In our study, as in the European studies (20, 21), homozygous site-present alleles were relatively uncommon, with a gene frequency of 14% among Caucasian controls. Among the Japanese, and among our African American controls, this variant allele was more common (17); in these populations the gene frequency was 33% (19) and 24% (this study), respectively. Several factors may explain the contrasting results of cancer risk for the CYP1A1 polymorphism: (a) the lower frequency of mutant alleles in European and American populations may limit the statistical power of these studies; (b) our selection of controls with a history of relatively long-term and heavy smoking minimizes the possibility of finding an effect in persons exposed to little or no tobacco smoke (19); (c) the Msp1 RFLP may be associated with the exon 7 mutation in the American study group, although this was not found in Europeans (21) (this hypothesis is currently being tested in Af-
CYP1A1 Genetic Polymorphism

versus demiological data for cancer risk in this mace equally elevated in these groups compared to the general obstructive lung disease so the genotype frequency may be site-present.

CYP2D6 cans.5 Thus, we hypothesized that the differ significantly between African and Caucasian Amen-demonstrated and the frequency of CYP2D6-8 to the metabolism of carcinogens has not been adequately drocarbons (22, 33). In addition, a mechanistic relationship Caucasians. Furthermore, earlier findings from this study population, but not different from each other.

polymorphisms and cancer risk.

In conclusion, the previously identified CYP1A1 Mspl RFLP was not associated with lung cancer risk in this Amer-ican Americans); and (d) the CYP1A1 genetic polymorphism may be a risk factor for lung cancer and chronic obstructive lung disease so the genotype frequency may be equally elevated in these groups compared to the general population, but not different from each other.

The increased frequency of the CYP1A1 Mspl site-present allele in African Americans is consistent with epidemiological data for cancer risk in this race versus that of Caucasians. Furthermore, earlier findings from this study population showed racial differences among several genetic polymorphisms, including debrisoquine metabolism (28), CYP2D6-8 polymorphisms, including debnisoqumne metabolism (28), population showed racial differences among several genetic r-myc (30),

484

Table 4 Odds ratios for CYP1A1 mutant allele, according to lifetime cigarette consumptiona

<table>
<thead>
<tr>
<th>Case status</th>
<th><40</th>
<th>40-59</th>
<th>>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/W</td>
<td>W/M or M/M</td>
<td>W/W</td>
<td>W/M or M/M</td>
</tr>
<tr>
<td>Case</td>
<td>16</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Control</td>
<td>9</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>OR</td>
<td>1.0</td>
<td>0.7 (0.2–3.3)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

a Excludes 1 case and 2 controls with incomplete smoking history.
b Pack-years = average number of packs smoked/day × total number of years spent smoking.
c W/W, homozygous site-absent; W/M, homozygote; M/M, homozygous site-present.
d Numbers in parentheses, 95% confidence intervals.

can case-control study, even within racial or histological groups. However, the small sample size may have limited our ability to detect an effect, particularly among African Americans, so that further study is warranted. It also remains to be established whether the CYP1A1 Mspl RFLP is associated with the exon 7 mutation in African Americans.

Acknowledgments

The authors wish to thank Dorothea Dudek for her editorial assistance.

References

Lung cancer, race, and a CYP1A1 genetic polymorphism.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/2/5/481