Circulating Folate, Vitamin B₁₂, Homocysteine, Vitamin B₁₂ Transport Proteins, and Risk of Prostate Cancer: a Case-Control Study, Systematic Review, and Meta-analysis

Simon M. Collin¹, Chris Metcalfe¹, Helga Refsum³,⁵, Sarah J. Lewis¹, Luisa Zuccolo¹, George Davey Smith¹,², Lina Chen¹, Ross Harris⁵, Michael Davis¹, Gemma Marsden⁶, Carole Johnston³, J. Athene Lane⁶, Marta Ebbing⁷, Kaare Harald Bønaa⁸, Ottar Nygård⁷,⁸, Per Magne Ueland⁷,⁸, Maria V. Grau¹⁰, John A. Baron¹⁰, Jenny L. Donovan¹, David E. Neal¹¹, Freddie C. Hamdy⁴, A. David Smith³, and Richard M. Martin¹,²

Abstract

Background: Disturbed folate metabolism is associated with an increased risk of some cancers. Our objective was to determine whether blood levels of folate, vitamin B₁₂, and related metabolites were associated with prostate cancer risk.

Methods: Matched case-control study nested within the U.K. population–based Prostate testing for cancer and Treatment (ProtecT) study of prostate-specific antigen–detected prostate cancer in men ages 50 to 69 years. Plasma concentrations of folate, B₁₂ (cobalamin), holo-haptocorrin, holo-transcobalamin total transcobalamin, and total homocysteine (tHcy) were measured in 1,461 cases and 1,507 controls. ProtecT study estimates for associations of folate, B₁₂, and tHcy with prostate cancer risk were included in a meta-analysis, based on a systematic review.

Results: In the ProtecT study, increased B₁₂ and holo-haptocorrin concentrations showed positive associations with prostate cancer risk [highest versus lowest quartile of B₁₂ odds ratio (OR) = 1.17 (95% confidence interval, 0.95-1.43); \(P \text{ trend} = 0.06 \); highest versus lowest quartile of holo-haptocorrin OR = 1.27 (1.04-1.56); \(P \text{ trend} = 0.01 \)]; folate, holo-transcobalamin, and tHcy were not associated with prostate cancer risk. In the meta-analysis, circulating B₁₂ levels were associated with an increased prostate cancer risk [pooled OR = 1.10 (1.01-1.19) per 100 pmol/L increase in B₁₂; \(P = 0.002 \)]; the pooled OR for the association of folate with prostate cancer was positive [OR = 1.11 (0.96-1.28) per 10 nmol/L; \(P = 0.2 \)] and conventionally statistically significant if ProtecT (the only case-control study) was excluded [OR = 1.18 (1.00-1.40) per 10 nmol/L; \(P = 0.02 \)].

Conclusion: Vitamin B₁₂ and (in cohort studies) folate were associated with increased prostate cancer risk.

Impact: Given current controversies over mandatory fortification, further research is needed to determine whether these are causal associations.

Introduction

The folate-mediated one-carbon metabolic pathway is fundamental to DNA synthesis, repair, and methylation (1). The role of folate antagonists in treating hematological (2) and trophoblastic (3) malignancies is well known, and genetic studies have suggested that folate pathway gene polymorphisms may be associated with colorectal and gastric cancers (4). Several epigenetic mechanisms related to folate metabolism, including CpG island and histone methylation, DNA uracil misincorporation, and chromosomal rearrangements, have been observed in prostate tumor cells (5, 6).

Studies of dietary intake and blood levels of folate, vitamin B₉, methionine, and homocysteine have generally found no associations with risk of prostate cancer (7-17).
whether plasma concentrations of folate, vitamin B12, for cancer and Treatment (ProtecT) study to investigate total B12 with conditions related to impaired folate and decreased levels have been associated more strongly than an alternative marker of impaired B12 absorption (25), and the main trial finding was not replicated in a larger trial (21). Although differences in study design may partly explain these contradictory findings (22), any role of folate metabolism is likely to be complex, possibly involving a dual effect in which low-folate concentrations are associated with increased risk of cancer initiation, whereas high concentrations, or folic acid supplementation, are associated with more rapid progression following disease onset (23). Answers to these research questions are urgently needed to inform the debate over mandatory fortification of food with folic acid and vitamin B12.

We used data from a cross-sectional case-control study nested within the U.K. population-based Prostate testing for cancer and Treatment (ProtecT) study to investigate whether plasma concentrations of folate, vitamin B12, and total homocysteine (tHcy) were associated with the risk of localized and/or advanced prostate cancer detected by means of prostate-specific antigen (PSA) testing. We included our results in a meta-analysis of data from studies identified by a systematic review of the literature.

In the ProtecT case-control study, we also measured the concentrations of total transcobalamin and holo-transcobalamin, and calculated the concentration of holo-haptocorrin. Haptocorrin and transcobalamin are B12 transport proteins to which total circulating B12 is protected by means of prostate-specific antigen (PSA) testing. We used data from a cross-sectional case-control study nested within the U.K. population-based Prostate testing for cancer and Treatment (ProtecT) study to investigate whether plasma concentrations of folate, vitamin B12, and total homocysteine (tHcy) were associated with the risk of localized and/or advanced prostate cancer detected by means of prostate-specific antigen (PSA) testing. We included our results in a meta-analysis of data from studies identified by a systematic review of the literature.

Materials and Methods

Study population
The ProtecT study is a randomized controlled trial of treatments for localized prostate cancer. Between 2001 and 2009, all (~227,300) men ages 50 to 69 years in 300 general practices located around nine U.K. cities (centers) were invited to have a PSA test at a prostate check clinic appointment. Participants with a PSA level between 3.0 and 19.9 ng/mL (~10% of men tested) were invited to attend the center's urology department for digital rectal examination and 10-core trans-rectal ultrasound-guided biopsy. Men with a PSA level of ≥20 ng/mL were referred as a matter of urgency to a urologist and were eligible to participate in the treatment trial only if localized cancer was confirmed. A diagnosis of localized prostate cancer was defined as a positive biopsy, clinical stage T1 to T2, NX, M0; advanced prostate cancer was defined as positive biopsy, clinical stage T3 to T4, or N1 or M1. All men provided written informed consent. Trent Multicentre Research Ethics Committee approved the ProtecT study and allied prostate cancer research under the auspices of Prostate Mechanisms of Prostate cancer and Treatment.

Selection of cases and controls
The study size (1,500 cases and 1,500 controls) was determined a priori to detect an effect estimate [odds ratios (OR)] of 1.26 (exposure odds in cases, 0.42) comparing the highest versus lowest three quartiles of vitamin and metabolite concentration at 5% significance and 80% power. Cases were selected at random from among all men diagnosed (by July 2008) with localized or advanced cancer who had consented to a blood sample for research. Eligible controls were men who had a PSA level of <3 ng/mL, or who had a PSA level of ≥3 ng/mL and a negative biopsy result, and who had consented to provide a research blood sample. Controls were stratified to cases by 5-year age group and by the primary care practice from which they were recruited, thereby matching for calendar time as prostate check clinics were completed sequentially. For the assays investigated in the current analysis, one control per case was selected at random from the pool of eligible controls in each stratum.

Blood sample handling
A standardized blood collection and storage protocol was in place across all collecting centers. Blood was drawn from nonfasting participants at the time of their initial PSA test. Plasma samples were collected using the BD Vacutainer PPT 8.5-mL polymer gel and spray-dried K2EDTA separator tube (Becton, Dickinson and Co), centrifuged at 2,200 relative centrifugal force within 10 minutes of blood draw, and transported upright at 4°C to the local processing laboratory. The plasma was transferred to intermediate cryo-vials for medium-term storage and was frozen at −80°C within 36 hours of draw. Samples were transferred to the central biorepository hub on dry ice. Plasma samples were thawed at 4°C in a shaking water bath, mixed thoroughly using the Stuart SB3 Blood Rotator Mixer (Bibby Scientific Ltd) for 10 minutes, centrifuged for 10 minutes at 4°C at 4,500 rpm in the Beckman 25R Allegra centrifuge (Beckman Coulter Ltd.), and aliquotted into Starlab 1.5 mL cryotubes (STARLAB Ltd). The plasma was then stored at −80°C and transferred on dry ice to the Department of Physiology, Anatomy and Genetics, University of Oxford, for assay.

Biochemical analyses
Plasma concentrations of folate, B12, holo-transcobalamin, and total transcobalamin were measured by automated (Perkin-Elmer MultiProbe 11 liquid handling
system, Perkin-Elmer Life and Analytical Sciences) microbiological assay using *Lactobacillus casei* for folate (31) and *Lactobacillus leichmanii* for B12 (32), holo-transcobalamin, and total transcobalamin (33). Plasma tHcy was measured by automated (Abbott IMx system, Abbott Laboratories) fluorescence polarization immunoassay (34). Between-batch coefficients of variation were, respectively, 7.4% for folate, 7.1% for B12, 8.2% for holo-transcobalamin and total transcobalamin, 10% for holo-haptocorrin, and 3.3% for tHcy. Each batch contained an approximate 1:1 mix of case and control samples, and laboratory staff were blind to case-control status. Assays that gave out-of-range results were repeated with diluted (if too high) or larger (if too low) samples. Full results were obtained for all bar one sample (insufficient volume for tHcy assay). Folate was measured as <2 nmol/L in four participants and holo-transcobalamin as <9 pmol/L in 13 participants; values of 1.8 nmol/L and 8 pmol/L, respectively, were substituted for these results. Holo-haptocorrin concentration was calculated by subtracting holo-transcobalamin concentration from B12 concentration; hence, it does not include cobalamin analogues.

Other covariates
Self-reported data on ethnicity, smoking, alcohol, medications and dietary supplements, family history of prostate cancer (father and brother), height, and weight were collected from Diet, Health and Lifestyle questionnaires, which are completed before the receipt of the initial PSA test result. Self-reported height was used to calculate body mass index (BMI, kg/m²), along with nurse-measured weight where available (92.5% of cases and 92.8% of controls) and self-reported weight otherwise.

Systematic review and data extraction
Eligible studies of the association of prostate cancer risk with serum or plasma folate, B12, or tHcy levels were identified by searching the Medline and Embase online databases using text search terms for “folate/folic,” “B12/cobalamin,” and “tHcy,” each in conjunction with the MeSH heading “Prostatic Neoplasms” and text terms “prostate cancer” and “prostatic carcinoma.” No language or publication date restrictions were imposed. All databases were last searched on September 26, 2009. References of retrieved articles were screened. Case-control and cohort studies that reported associations of blood (serum or plasma) levels of folate, B12, and tHcy with prostate cancer risk were included. We also included data from the placebo arms of randomized controlled trials of folic acid and B12 supplementation. Studies reported their results in several different ways and presented various models with different adjustments. We selected the age-adjusted estimate or a more fully adjusted estimate where available, except where the model was deemed by us to be overadjusted (e.g., adjusted for vegetable intake). Data were extracted independently by two investigators (SMC and RH).

Statistical methods
Vitamins and metabolites. Circulating vitamin and metabolite concentrations were categorized into quartiles (with cut-points based on the their distributions among controls), and ORs as a measure of relative risk of prostate cancer per quartile of vitamin and metabolite were estimated by conditional logistic regression to account for the matching variables (5-y age group and recruiting general practice), further adjusted for exact age as a continuous variable. Linear trends across quartiles were tested in these models using the mean value for each quartile. ORs for associations with advanced and localized cancer versus controls were compared using a multinomial logistic regression model. This model provides a statistical test for heterogeneity in ORs comparing associations of the vitamins and metabolites of interest with localized versus advanced prostate cancers. It is an unconditional model; hence, it was adjusted for exact age and the study center where the recruiting general practice was based (nine-level variable). Pairwise correlations between circulating vitamin and metabolite concentrations (and with PSA level) in controls were measured by Spearman’s rank correlation coefficient. Given previous suggestions of possible U-shaped relationships (23), we used fractional polynomials to investigate possible departures from linearity in the relationships between vitamin and metabolite levels (as continuous measures) and prostate cancer risk (35). Circulating vitamin and metabolite concentrations were natural log transformed (all had nonnormal distributions) for inclusion in multivariable linear regression models. These models were used to assess potential confounders (see “other covariates”), to assess the effects of mutually adjusting vitamin and metabolite levels for each other, and to test for interaction between folate and B12, and between folate and alcohol on prostate cancer risk. We investigated by linear regression whether log-transformed vitamin and metabolite concentrations were associated with PSA level among controls because any such association could bias the PSA-based detection of prostate cancer.

Meta-analysis. To compare across studies, we calculated the log OR or hazard ratio per unit increase in vitamin and metabolite concentration. For studies presenting their results within categories of exposure (e.g., quartiles), we used the mean or median exposure in each category when they were reported and calculated the log OR per unit increase in exposure using the method of Greenland and Longnecker (36). When the mean or median in each group was not reported and a range of exposure in each group was given, we estimated the mean exposure in each group using the method of Chéne and Thompson (37). Having fitted means to each group, the data were analyzed using the Greenland and Longnecker method (36). We used Stata’s `metainf` command to investigate whether the exclusion of any one study would significantly change the pooled estimate, that is, whether the pooled point estimate with one study excluded would lie outside the 95% confidence interval (95% CI) of the pooled estimate with all studies included (38).
Software. All statistical analyses were done using Stata Release 11 (StataCorp.).

Results

Baseline characteristics

Of the 3,019 cases and controls for whom plasma concentrations were measured, 51 were in unmatched strata. The remaining 2,968 men were in 587 strata. There was a small surplus of controls in 66 strata and a small deficit in 29 strata; hence, the final analysis was based on 1,461 cases [1,298 (89%) localized, 163 (11%) advanced] and 1,507 controls. There were no differences in the baseline characteristics of cases and controls (Table 1), but anthropometric (height and weight) and life-style data (smoking, alcohol consumption, and vitamin supplement) were missing (mainly due to nonreturn of questionnaires) for a higher proportion of controls (26-27%) than cases (18-19%).

The majority of pairwise combinations of folate, B12, holo-haptocorrin, holo-transcobalamin and total transcobalamin, and tHcy were correlated (Supplementary Table S1). Folate was most strongly correlated with tHcy (correlation coefficient = −0.51), but was also correlated with holo-transcobalamin (correlation coefficient = 0.31) and with B12 (correlation coefficient = 0.22). None of the vitamin or metabolite concentrations were associated with PSA levels among controls.

Plasma vitamin and metabolite levels, and prostate cancer risk

Of the six vitamins and metabolites, circulating concentrations of B12, holo-haptocorrin, and total transcobalamin were associated with prostate cancer risk in the basic conditional logistic regression models (Table 2). Higher quartiles of B12 showed a trend ($P_{\text{trend}} = 0.06$) toward increased risk, although this positive association was evident only weakly for the highest versus lowest quartile (OR = 1.17; 95% CI, 0.95-1.43; $P = 0.1$). Holo- haptocorrin concentration was positively associated ($P_{\text{trend}} = 0.006$) with prostate cancer risk (OR = 1.27; 95% CI, 1.04-1.56; $P = 0.02$ comparing highest versus lowest quartiles). Total transcobalamin had an inverse association ($P_{\text{trend}} = 0.04$) with risk of localized prostate cancer, evident only weakly for the highest versus lowest quartile (OR = 0.80; 95% CI, 0.64-1.00; $P = 0.1$).

For B12, total transcobalamin, and holo-haptocorrin, the lowest (or highest) ORs appeared in the second quartile, but models incorporating fractional polynomial

Table 1. Baseline characteristics of participants stratified by case-control status

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Measure</th>
<th>Cases (n = 1,461)</th>
<th>Controls (n = 1,507)</th>
<th>P^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Mean (SD)</td>
<td>62.5 (5.1)</td>
<td>62.3 (5.1)</td>
<td>0.2</td>
</tr>
<tr>
<td>Ethnicity (white)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>Mean (SD)</td>
<td>27.9 (3.7)</td>
<td>28.2 (4.1)</td>
<td>0.1</td>
</tr>
<tr>
<td>Tobacco use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td></td>
<td>20.2%</td>
<td>17.3%</td>
<td>0.1</td>
</tr>
<tr>
<td>Ever smoked</td>
<td></td>
<td>63.3%</td>
<td>65.5%</td>
<td>0.3</td>
</tr>
<tr>
<td>Alcohol consumption in the past 12 mo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Almost daily or more often</td>
<td></td>
<td>38.5%</td>
<td>37.8%</td>
<td>0.5</td>
</tr>
<tr>
<td>Once or twice per week</td>
<td></td>
<td>41.2%</td>
<td>42.4%</td>
<td>0.5</td>
</tr>
<tr>
<td>Once or twice per month</td>
<td></td>
<td>8.5%</td>
<td>6.9%</td>
<td>0.3</td>
</tr>
<tr>
<td>Special occasions or never</td>
<td></td>
<td>11.9%</td>
<td>12.9%</td>
<td></td>
</tr>
<tr>
<td>Vitamin supplement use in past 12 mo (yes/no)</td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>Circulating vitamin and metabolite concentrations</td>
<td>Median (5th-95th percentile)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folate (nmol/L)</td>
<td>15.9 (15.1-51.4)</td>
<td>15.8 (15.8-52.3)</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Vitamin B12 (pmol/L)</td>
<td>307 (156-542)</td>
<td>290 (158-521)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Holo-haptocorrin (pmol/L)</td>
<td>247 (119-439)</td>
<td>240 (120-425)</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Holo-transcobalamin (pmol/L)</td>
<td>57 (23-117)</td>
<td>56 (24-119)</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Total transcobalamin (pmol/L)</td>
<td>860 (612-1,269)</td>
<td>874 (602-1,270)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>tHcy (µmol/L)</td>
<td>11.1 (7.8-17.6)</td>
<td>11.1 (7.7-17.7)</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

* χ^2 test (proportions), Student’s t test (means), or two-sample Wilcoxon rank-sum (Mann-Whitney) test (medians).

†Numbers of cases and controls for whom these data were available: BMI (1,183 cases and 1,105 controls), current smoker (846 cases and 808 controls), ever smoked (1,208 cases and 1,117 controls), alcohol consumption (1,204 cases and 1,116 controls), and vitamin supplementation (875 cases and 831 controls).
Table 2. ORs for prostate cancer by categorical (quartiles) and continuous (loge-transformed) measures of plasma vitamin and metabolite concentrations

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Quartiles in controls (n = 1,507)</th>
<th>All cases (n = 1,461) vs controls</th>
<th>Localized cases (n = 1,298) vs controls</th>
<th>Advanced cases (n = 163) vs controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR* (95% CI)</td>
<td>OR* (95% CI)</td>
<td>OR* (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Folate (nmol/L)</td>
<td><10.8</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td></td>
<td>10.8-15.8</td>
<td>1.12 (0.91-1.37)</td>
<td>1.18 (0.96-1.46)</td>
<td>0.67 (0.39-1.18)</td>
</tr>
<tr>
<td></td>
<td>15.9-26.2</td>
<td>1.18 (0.96-1.44)</td>
<td>1.17 (0.94-1.44)</td>
<td>1.47 (0.89-2.45)</td>
</tr>
<tr>
<td></td>
<td>>26.2</td>
<td>1.01 (0.82-1.24)</td>
<td>1.07 (0.86-1.34)</td>
<td>0.71 (0.42-1.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P_{\text{trend}}^{†}) 0.7</td>
<td>(P_{\text{trend}}^{†}) 1.0</td>
<td>(P_{\text{het}}^{‡}) 0.4</td>
</tr>
<tr>
<td></td>
<td>Per loge</td>
<td>0.94 (0.84-1.06)</td>
<td>0.96 (0.86-1.08)</td>
<td>0.90 (0.67-1.21)</td>
</tr>
<tr>
<td>Vitamin B12 (pmol/L)</td>
<td><239</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td></td>
<td>239-299</td>
<td>0.91 (0.74-1.12)</td>
<td>0.95 (0.77-1.18)</td>
<td>0.70 (0.40-1.22)</td>
</tr>
<tr>
<td></td>
<td>300-376</td>
<td>0.99 (0.80-1.22)</td>
<td>0.99 (0.80-1.24)</td>
<td>0.93 (0.55-1.57)</td>
</tr>
<tr>
<td></td>
<td>>376</td>
<td>1.17 (0.95-1.43)</td>
<td>1.20 (0.97-1.48)</td>
<td>1.00 (0.61-1.65)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P_{\text{trend}}^{†}) 0.06</td>
<td>(P_{\text{trend}}^{†}) 0.05</td>
<td>(P_{\text{het}}^{‡}) 0.7</td>
</tr>
<tr>
<td></td>
<td>Per loge</td>
<td>1.19 (0.98-1.43)</td>
<td>1.21 (0.99-1.48)</td>
<td>1.04 (0.64-1.68)</td>
</tr>
<tr>
<td>Holo-haptocorrin (pmol/L)</td>
<td><187</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td></td>
<td>187-240</td>
<td>0.94 (0.76-1.16)</td>
<td>0.95 (0.76-1.19)</td>
<td>0.85 (0.50-1.44)</td>
</tr>
<tr>
<td></td>
<td>241-304</td>
<td>0.99 (0.80-1.22)</td>
<td>1.04 (0.84-1.29)</td>
<td>0.68 (0.39-1.19)</td>
</tr>
<tr>
<td></td>
<td>>304</td>
<td>1.27 (1.04-1.56)</td>
<td>1.27 (1.02-1.57)</td>
<td>1.24 (0.75-2.04)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P_{\text{trend}}^{†}) 0.01</td>
<td>(P_{\text{trend}}^{†}) 0.01</td>
<td>(P_{\text{het}}^{‡}) 0.3</td>
</tr>
<tr>
<td></td>
<td>Per loge</td>
<td>1.21 (1.01-1.44)</td>
<td>1.23 (1.02-1.48)</td>
<td>1.05 (0.67-1.64)</td>
</tr>
<tr>
<td>Holo-transcobalamin (pmol/L)</td>
<td><42</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td></td>
<td>42-56</td>
<td>1.08 (0.88-1.33)</td>
<td>1.11 (0.89-1.37)</td>
<td>1.02 (0.60-1.75)</td>
</tr>
<tr>
<td></td>
<td>57-78</td>
<td>1.09 (0.89-1.34)</td>
<td>1.12 (0.90-1.38)</td>
<td>1.00 (0.61-1.65)</td>
</tr>
<tr>
<td></td>
<td>>78</td>
<td>1.04 (0.84-1.28)</td>
<td>1.09 (0.87-1.35)</td>
<td>0.85 (0.50-1.44)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P_{\text{trend}}^{†}) 0.9</td>
<td>(P_{\text{trend}}^{†}) 0.6</td>
<td>(P_{\text{het}}^{‡}) 0.5</td>
</tr>
<tr>
<td></td>
<td>Per loge</td>
<td>0.99 (0.86-1.14)</td>
<td>1.01 (0.87-1.18)</td>
<td>0.93 (0.66-1.32)</td>
</tr>
<tr>
<td>Total transcobalamin (pmol/L)</td>
<td><749</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td></td>
<td>749-874</td>
<td>1.05 (0.86-1.29)</td>
<td>1.00 (0.81-1.23)</td>
<td>1.63 (0.94-2.83)</td>
</tr>
<tr>
<td></td>
<td>875-1,024</td>
<td>1.02 (0.83-1.25)</td>
<td>1.00 (0.80-1.24)</td>
<td>1.36 (0.78-2.37)</td>
</tr>
<tr>
<td></td>
<td>>1,024</td>
<td>0.84 (0.68-1.05)</td>
<td>0.80 (0.64-1.00)</td>
<td>1.36 (0.77-2.40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P_{\text{trend}}^{†}) 0.09</td>
<td>(P_{\text{trend}}^{†}) 0.04</td>
<td>(P_{\text{het}}^{‡}) 0.7</td>
</tr>
<tr>
<td></td>
<td>Per loge</td>
<td>0.76 (0.55-1.05)</td>
<td>0.71 (0.50-0.99)</td>
<td>1.45 (0.65-3.25)</td>
</tr>
<tr>
<td>tHcy(μmol/L)</td>
<td><9.52</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td></td>
<td>9.52-11.13</td>
<td>1.10 (0.90-1.35)</td>
<td>1.11 (0.89-1.37)</td>
<td>0.93 (0.54-1.59)</td>
</tr>
<tr>
<td></td>
<td>11.14-13.21</td>
<td>1.03 (0.84-1.27)</td>
<td>1.01 (0.81-1.26)</td>
<td>1.16 (0.68-1.95)</td>
</tr>
<tr>
<td></td>
<td>>13.21</td>
<td>1.04 (0.84-1.28)</td>
<td>1.01 (0.81-1.26)</td>
<td>1.05 (0.61-1.79)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P_{\text{trend}}^{†}) 1.0</td>
<td>(P_{\text{trend}}^{†}) 0.8</td>
<td>(P_{\text{het}}^{‡}) 0.8</td>
</tr>
<tr>
<td></td>
<td>Per loge</td>
<td>0.90 (0.69-1.19)</td>
<td>0.88 (0.66-1.17)</td>
<td>0.94 (0.47-1.91)</td>
</tr>
</tbody>
</table>

*From conditional logistic regression matching on 5-y age group and recruiting center, further adjusted for exact age (continuous).
†From conditional logistic regression matching on 5-y age group and recruiting center, further adjusted for exact age (continuous), using quartile means as a linear variable.
‡From multinomial logistic regression, adjusted for age (continuous) and study center, using log-transformed concentration.
terms for each vitamin or metabolite as continuous variables gave no indication of departure from linearity (all $P > 0.1$). There were no differences in the associations of vitamin or metabolite concentrations with prostate cancer according to whether the cancer was localized or advanced with the exception of total transcobalamin concentration, which was inversely associated with the risk of localized cancer but not associated with advanced cancer ($P_{\text{heterogeneity}} = 0.06$).

Table 2 also shows age-adjusted estimates for each vitamin and metabolite as continuous log-transformed variables (OR per loge approximates to a doubling in concentration) that were included in multivariable conditional logistic regression models. We found little or no change in the estimates for each vitamin and metabolite when mutually adjusted for each other, and there was no interaction between levels of folate and B12. In multivariable conditional logistic regression based on men for whom anthropometric (BMI) and lifestyle (smoking, alcohol consumption, and vitamin supplementation) data were available (811 cases and 779 controls), these covariates did not confound the associations of vitamin and metabolite concentrations with prostate cancer risk, and there was no interaction between levels of folate and alcohol intake.

Systematic review and meta-analysis

Our literature search identified 414 studies, of which 20 were eligible. Of these, six, five, and three studies provided data on blood concentrations of folate (7, 13, 15, 18, 19, 21), B12 (7, 13, 15, 18, 21), and tHcy (7, 13, 21), respectively (Supplementary Table S2). The excluded studies reported data on dietary folate or B12 intake only, or concentrations of other folate pathway vitamins and metabolites, or outcomes other than prostate cancer risk. The results of the Hultdin et al. study (13) were replicated in a subgroup analysis by Johansson et al. (15) using the same samples but a different assay (*Lactobacillus leichmannii* microbiological assay instead of Quantaphase II radioassay) and adjusted for BMI, smoking, and concentrations of folate and tHcy. We used the Hultdin et al. data (13) although the Johansson

![Figure 1. Meta-analyses of associations of circulating folate, vitamin B12, and tHcy concentrations with prostate cancer risk.](image-url)

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Measure</th>
<th>Median at baseline</th>
<th>Effect estimate: OR (95% CI)</th>
<th>Inverse variance weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folate (per 10 nmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weinstein 2003</td>
<td>Quarters</td>
<td>8.7 nmol/L</td>
<td>1.23 (0.68-2.20)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Hultdin 2005</td>
<td>Quarters</td>
<td>7.7 nmol/L</td>
<td>1.72 (1.03-2.86)</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>Rossi 2006</td>
<td>HR per SD (4.5 nmol/L)</td>
<td>4.5 nmol/L</td>
<td>0.68 (0.39-1.23)</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>Johansson 2008</td>
<td>Quintiles</td>
<td>8.3 nmol/L</td>
<td>1.22 (1.00-1.48)</td>
<td>10.52</td>
<td></td>
</tr>
<tr>
<td>Figueiredo 2009</td>
<td>HR per SD (18 nmol/L)</td>
<td>18.6 nmol/L</td>
<td>1.20 (0.85-1.71)</td>
<td>3.13</td>
<td></td>
</tr>
<tr>
<td>Ebbing 2009</td>
<td>Quarters</td>
<td>8.6 nmol/L</td>
<td>1.04 (0.83-1.30)</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>Proiect 2008</td>
<td>Quarters</td>
<td>15.8 nmol/L</td>
<td>1.01 (0.94-1.08)</td>
<td>81.08</td>
<td></td>
</tr>
<tr>
<td>Fixed effects pooled estimate ($R^2 = 39.5% ; P = 0.13$)</td>
<td></td>
<td></td>
<td>1.04 (0.98-1.11)</td>
<td>100.00</td>
<td>1.11 (0.96-1.28)</td>
</tr>
</tbody>
</table>

Vitamin B12 (per 100 pmol/L)					
Weinstein 2003	Quarters	279 pmol/L	1.03 (0.86-1.23)	8.30	
Hultdin 2005	Quarters	300 pmol/L	1.43 (1.10-1.79)	7.63	
Johansson 2008	Quarters	353 pmol/L	1.06 (0.96-1.17)	26.89	
Figueiredo 2009	HR per SD (174 pmol/L)	310 pmol/L	1.04 (0.70-1.55)	1.67	
Ebbing 2009	Quarters	347 pmol/L	1.06 (0.87-1.28)	7.39	
Proiect 2009	Quarters	300 pmol/L	1.07 (0.99-1.15)	48.11	
Fixed effects pooled estimate ($R^2 = 46.6\% ; P = 0.10$)			1.06 (1.03-1.14)	100.00	1.10 (1.01-1.19)

Total homocysteine (per 10 µmol/L)					
Weinstein 2003	Quarters	11.8 µmol/L	1.13 (0.61-2.11)	13.82	
Hultdin 2005	Quarters	12.1 µmol/L	0.88 (0.30-1.11)	12.58	
Ebbing 2009	Quarters	11.2 µmol/L	0.71 (0.36-1.38)	12.02	
Proiect 2009	Quarters	11.1 µmol/L	1.03 (0.77-1.38)	61.59	
Fixed effects pooled estimate ($R^2 = 14.6\% ; P = 0.32$)			0.93 (0.74-1.17)	100.00	0.91 (0.69-1.19)

* For Johansson 2008, midpoint of middle quintile for all subjects (Swedish and non-Swedish)
et al. (15) data gave very similar results. We used unpublished data from the placebo arms of two randomized controlled trials: one of folic acid and aspirin supplementation for the chemoprevention of colorectal adenomas (18) and one of folic acid, vitamin B12, and vitamin B6 supplementation for the lowering of tHcy among patients with ischaemic heart disease (21).

We conducted dose-response meta-analyses, combining our results for serum concentrations of folate, B12, and tHcy with those extracted from the literature and those obtained directly from authors (Fig. 1). The pooled (random effects) estimates were as follows: OR of 1.11 (95% CI, 0.96-1.28) per 10 nmol/L folate \((P = 0.2) \), OR of 1.10 (95% CI, 1.01-1.19) per 100 pmol/L B12 \((P = 0.002) \), and OR of 0.91 (95% CI, 0.69-1.19) per 10 \(\mu \)mol/L tHcy \((P = 0.5) \). Hence, there was no strong statistical evidence for an association of folate or tHcy with prostate cancer risk, but there was evidence to support a 10% higher odds per 100 pmol/L increase in circulating B12. There was some heterogeneity in the associations of folate \((I^2 = 40\%) \) and B12 \((I^2 = 47\%) \) with prostate cancer risk. There were too few published studies to assess small-study bias. Influence analysis using Stata’s `metainf` command showed that excluding any one study from the meta-analysis of associations of B12 and tHcy with prostate cancer risk did not significantly change either the fixed or random effects pooled estimates (Fig. 2). However, exclusion of the ProtecT case-control study from the meta-analysis of the associations of folate with prostate cancer risk changed the fixed-effects pooled estimate to an OR of 1.19 (95% CI, 1.03-1.37) per 10 nmol/L folate \((P = 0.02) \) and left little heterogeneity between the remaining studies \((I^2 = 13\%) \), all of which were prospective cohort studies (Fig. 2). The median baseline concentrations of B12 and tHcy were similar in all studies, but baseline concentrations of folate were higher in the Figueiredo (USA) and ProtecT studies (Fig. 2), and among non-Swedish subjects in the Johansson (pan-European) study. The number of studies was too small to support meta-regression analysis to test whether the measures of effect

Figure 2. Meta-analyses of associations of circulating folate, vitamin B12, and tHcy concentrations with prostate cancer risk in prospective cohort studies.

12 Unpublished data.
in each study were related to these baseline values. However, examination of effect estimates against the median baseline values of folate, vitamin B12, and tHcy gave no indication that heterogeneity between studies was attributable to differences in baseline concentrations.

Discussion

Data from the ProtecT study, when combined with results from all other studies, suggest that high circulating concentrations of vitamin B12 may be associated with an increased risk of prostate cancer (Fig. 1). The ProtecT data also showed that high circulating concentrations of holo-haptocorrin were associated with increased risk, and high circulating concentrations of total transcobalamin with decreased risk of prostate cancer. We found no association of folate with prostate cancer risk in the ProtecT data. This result strongly influenced the meta-analysis, which would otherwise have shown a clear positive association of circulating folate with increased prostate cancer risk (Fig. 2). It is possible that folate is positively associated with the rate of progression of localized prostate cancer; hence, the ProtecT study (based on PSA-detected prevalent cases) would not detect an effect observed in European cohort studies based mainly on clinically detected cases. We found no associations of tHcy with prostate cancer risk, either in our own data or in the meta-analysis. Although there was considerable variation in baseline folate levels between studies, this did not seem to explain between-study differences in the measures of association of folate with prostate cancer risk. This is consistent with Johansson et al. (15) who found no difference of effect between Swedish versus non-Swedish subjects in their pan-European study, despite baseline levels of folate being much lower in Sweden.

The ProtecT study is by far the largest study to date of associations of circulating folate pathway vitamin and metabolite concentrations with risk of prostate cancer, contributing 81%, 48%, and 62% by (inverse variance) weight to the fixed effects meta-analytic results for folate, B12, and tHcy, respectively (Fig. 1). The coefficients of variation for our assay results were low, and any measurement error would attenuate effect estimates to the null rather than generate the observed associations. The study’s main limitation is that blood samples were drawn after the occurrence of disease; hence, causality cannot be directly inferred from our results. However, men were unaware of their disease status, so they were unlikely to have changed their behavior or diet in response to the disease. In addition, our results were similar for advanced and localized disease, which is contrary to what would be expected if effects were secondary to disease status. As with all prostate cancer case-control studies based on PSA testing followed by biopsies, some measurement error would be present due to the imperfect nature of the diagnostic process (39). Non-Caucasian men were not represented in the ProtecT study, or in any of the other studies in our meta-analysis (except for a small proportion (7%) in the Aspirin/Folic Acid Polyp Prevention trial); therefore, our findings may not be generalizable to all populations. The small number of advanced cases in ProtecT means we may have been underpowered to detect true differences in associations of vitamin or metabolite concentrations with prostate cancer according to whether the cancer was localized or advanced. Fractional polynomial analysis of the ProtecT data did not indicate departure from linearity for the associations of B12, holo-haptocorrin, and total transcobalamin with prostate cancer risk, but these associations were evident only in the top quartiles when analyzed as categorical variables. Whether there really is only an effect at extreme elevations could not be discerned from our review of the literature, although two studies showed a similar pattern, with associations evident only in the top quartile of circulating folate (13, 15).

That we found no confounding or effect modification by BMI, smoking, or alcohol consumption of associations between vitamin and metabolite concentrations and prostate cancer is consistent with other studies (7, 13, 14, 20). Among men with prostate cancer in the ProtecT study, those who reported little or no sexual activity had higher plasma B12 concentrations (data not shown). However, among men with raised PSA levels in the ProtecT study, there was no association between sexual dysfunction and prostate cancer; hence, confounding by sexual activity is unlikely to explain our findings (40).

The positive association of B12 with prostate cancer risk could be causal, or due to reverse-causation or coincidental. A causal association would be consistent with the epidemiologic mechanisms of prostatic carcinogenesis if these were triggered by elevated levels of B12 independently of folate and tHcy. Although some associations of B12 with DNA methylation have been observed in rats (41, 42) and humans (43, 44), such a process as a cause of prostate cancer remains speculative. Vitamin B12 is an essential cofactor of methionine synthase, and we reported in a previous meta-analysis that the A2756G polymorphism of this enzyme is associated with an increased risk of prostate cancer (45). We proposed a causal “activating polymorphism” mechanism that might be consistent with our finding for B12, but this is speculative.

One possible mechanism of reverse causation could be prostate tumor cells having an increased demand for B12 due to the increased biosynthesis of polyamines (46), which in turn upregulates the activity of methionine synthase (47). Another mechanism could be that elevated levels of plasma B12 are due to the increased production of haptocorrin by prostate tumor cells (48), an effect which may explain high levels of B12 observed in myelogeneous leukemias and metastatic cancers (30). Whether prostate carcinomas can raise plasma concentrations of haptocorrin and B12 by such processes remains hypothetical, and we did not observe stronger positive associations of plasma B12 and holo-haptocorrin with advanced versus localized prostate cancer. However, the plausibility of reverse causation as an explanation for our findings is perhaps reinforced.
by the absence of an association of holo-transcobalamin, representing the bioavailable fraction of B12, with prostate cancer risk. We cannot suggest a clear biological explanation for the inverse association of total transcobalamin with localized prostate cancer. Finally, it is conceivable that folate pathway genes could be affected coincidentally by epigenetic alterations that play a causal role in prostate cancer. For example, the multidrug resistance protein gene (MRP1), which is overexpressed in several cancers including prostate cancer (49), has recently been shown to play a role in cellular efflux of B12 (50).

That we found similar associations of folate, B12, and tHcy with advanced and localized prostate cancer is consistent with previous studies (7, 13-15), although Johansson et al. (15) reported (from a cohort study) borderline significance for a doubling in vitamin B12 concentration (P = 0.05) between localized and advanced cases for B12: a doubling in vitamin B12 concentration was associated with an OR of 1.69 (95% CI, 1.05-2.72; P = 0.03) of advanced cancer, whereas B12 concentrations were not associated with risk for localized disease (OR = 0.96; 95% CI, 0.71-1.29; P = 0.8). We found marginal evidence of similar heterogeneity (P = 0.09) for total transcobalamin [advanced disease OR = 1.46 (95% CI, 0.65-3.26); localized disease OR = 0.70 (95% CI, 0.50-0.99)]. Levels of B12 and total transcobalamin in our data were uncorrelated, and our finding may be due to chance rather than a corroboration of Johansson et al.’s (15) finding for B12.

The only studies to date of dietary B12 intake and prostate cancer risk both reported positive associations: Vlajinac et al. (12) found 2-fold higher odds (OR = 2.07; 95% CI, 1.08-3.97; P_trend = 0.02) for the highest versus lowest tertile, and Weinstein et al. (among smokers; ref. 14) found 36% higher odds in the highest versus lowest quintile (OR = 1.36; 95% CI, 1.14-1.62; P_trend = 0.01). Both studies reported that these results withstood adjustment for dietary covariates: Vlajinac et al. (12) for intake of total energy, protein, total fat, saturated fatty acids, carbohydrate, total sugar, fiber, retinol equivalent, α-tocopherol, folate, sodium, potassium, calcium, phosphorus, magnesium, and iron, and Weinstein et al. (14) for total energy, total protein, animal protein, total fat, animal fat, folate, B6, methionine, iron, and specific foods that are correlates of B12 intake (fish, organ meats, sausages, cholesterol, fatty acids, vitamins, and minerals). Hence, there was no confounding by other nutrients that cooccur in foods high in B12 and which may be associated with prostate cancer risk. Both studies also adjusted for nondietary covariates. Although these results may suggest a possible causal relationship, the limitations of studies based on food frequency questionnaires are well known, particularly with regard to diet-cancer associations (51). Indeed, the B12 dietary intake finding by Weinstein et al. (7) was not found in their earlier, albeit smaller, study of circulating concentrations of B12.

We conclude that our finding of a positive association of circulating B12 with increased prostate cancer risk could be explained by reverse causality. However, given current controversies over mandatory B12 fortification (52), further research to eliminate a causal role of vitamin B12 in prostate cancer initiation and/or progression is required, including Mendelian randomization analyses (53) and repeat measurements of B12 and holo-haptocorrin levels during prostate cancer development and/or before and after treatment. Our meta-analysis did not entirely rule out a positive association of circulating folate with increased prostate cancer risk. As with B12, even a weak positive association would be a significant public health issue, given the high prevalence of prostate cancer, and a legitimate concern about the potential harms versus benefits of mandatory folic acid fortification (23).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Additional Contributions: We thank all members of the ProtecT study research group for the tremendous contribution; especially the following who were involved in this research: Prasad Bollina, Sue Bonnington, Debbie Cooper, Andrew Doble, Alan Doherty, Emma Elliott, David Gillatt, Pippa Herbert, Peter Holding, Joanne Howson, Liz Down, Mandy Jones, Roger Kockelbergh, Howard Kynaston, Teresa Lennon, Norma Lyons, Hilary Moody, Philip Powell, Stephen Prescott, Liz Salt, and Pauline Thompson; and Cynthia Prendergast (University of Oxford) for her invaluable help with the biochemical analyses.

Grant Support

World Cancer Research Fund UK (grant number: 2007/07). The National Cancer Research Institute (administered by the Medical Research Council) provided support for the development of the ProtecT epidemiologic database through the Prostate Mechanisms of Progression and Treatment Collaborative. The ProtecT study is supported by the UK NIHR Health Technology Assessment Programme (projects 96/20/06, 96/20/99). Support for the ProtecT biorepository in Cambridge is provided by NIHR through the Biomedical Research Centre.

Role of the Funders: The funders were nonprofit organizations with no participating role in the study.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 02/17/2010; revised 03/30/2010; accepted 04/05/2010; published OnlineFirst 05/25/2010.
References

Cancer Epidemiology, Biomarkers & Prevention

Circulating Folate, Vitamin B$_{12}$, Homocysteine, Vitamin B$_{12}$ Transport Proteins, and Risk of Prostate Cancer: a Case-Control Study, Systematic Review, and Meta-analysis

Updated version
Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-10-0180

Supplementary Material
Access the most recent supplemental material at:
http://cebp.aacrjournals.org/content/suppl/2010/05/24/1055-9965.EPI-10-0180.DC1

Cited articles
This article cites 52 articles, 30 of which you can access for free at:
http://cebp.aacrjournals.org/content/19/6/1632.full#ref-list-1

Citing articles
This article has been cited by 15 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/19/6/1632.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.