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Abstract
Background: Bulky DNA adducts aremarkers of exposure to genotoxic aromatic compounds, which reflect

the ability of an individual to metabolically activate carcinogens and to repair DNA damage. Polycyclic

aromatic hydrocarbons (PAHs) represent a major class of carcinogens that are capable of forming such

adducts. Factors that have been reported to be related to DNA adduct levels include smoking, diet, bodymass

index (BMI), genetic polymorphisms, the season of collection of biologic material, and air pollutants.

Methods: We pooled 11 studies (3,600 subjects) in which bulky DNA adducts were measured in human

white blood cells with similar 32P-postlabeling techniques and for which a similar set of variables was

available, including individual data on age, gender, ethnicity, batch, smoking habits, BMI, and season of blood

collection, and a limited set of gene variants.

Results: Lowest DNA adduct levels (P¼ 0.006) were observed in the spring (median¼ 0.50 adducts per 108

nucleotides), followed by summer (0.64), autumn (0.70), and winter (0.85). The same pattern emerged in

multivariate analysis but only among never smokers (P ¼ 0.02). Adduct levels were significantly lower (P ¼
0.001) in northern Europe (the Netherlands and Denmark; mean ¼ 0.60, median ¼ 0.40) than in southern

Europe (Italy, Spain, France, and Greece; mean ¼ 0.79, median ¼ 0.60).

Conclusions: In this large pooled analysis, we have found only weak associations between bulky DNA

adducts and exposure variables. Seasonality (with higher adducts levels in winter) and air pollution may

partly explain some of the interarea differences (north vs. south Europe), but most inter-area and inter-

individual variations in adduct levels still remain unexplained.

Impact: Our study describes the largest pooled analysis of bulky DNA adducts so far, showing that

interindividual variation is still largely unexplained, though seasonality seems to play a role. Cancer Epidemiol

Biomarkers Prev; 19(12); 3174–81. �2010 AACR.

Introduction

Bulky DNA adducts are markers both of exposure to
genotoxic aromatic compounds and of the ability of the
individual to metabolically activate carcinogens and to

repair DNA damage (1). Experimental studies in animal
models have highlighted the central role of DNA adduct
formation in tumorigenesis (2), and key human studies
have shown that carcinogenic polycyclic aromatic hydro-
carbons (PAHs) represent a major class of carcinogens
present in the environment and that are capable of form-
ing DNA adducts at the same DNA bases in which p53
mutations are found in lung cells of smokers (3). When
unrepaired, DNA adducts can cause mutations, includ-
ingmutational hotspots in the p53 tumor suppressor gene
and other genes, which may ultimately induce cancer
formation (3).

Human studies have shown a dose–response relation-
ship between occupational exposure to PAHs and the
levels of DNA adducts in lymphocytes of workers (4), but
at high levels of exposure, saturation seems to occur.
Although cigarette smoke also contains PAHs and other
DNA adduct-forming compounds, studies on the asso-
ciation between tobacco smoking and DNA adducts in
white blood cells (WBC) have yielded inconsistent results
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(5). In contrast, studies conducted on human lung tissue
did show an association with tobacco smoke (4–7). Some
studies have reported a negative correlation between
DNA adduct levels and the consumption of fruit and
vegetables and the intake of flavonoids (8–11), and the
dose–response relationship with smoking may be
affected by various dietary factors, especially in subjects
with certain genetic polymorphisms in metabolic
enzymes (5). Other factors that were reported to influence
DNA adduct formation included body mass index (BMI),
genetic polymorphisms in genes involved in the meta-
bolism of carcinogens, the season in which the WBC/
lymphocytes were sampled, and environmental pollu-
tants such as O3 and particulate matter (PM; refs. 4, 6, 12–
14). A study undertaken in New York City after the
events of September 11, 2001, found a direct relationship
between the amount of DNA adducts in umbilical cord
blood of newborn children and proximity to the World
Trade Center (15), which suggests that air pollution may
be a significant contributor to the formation of DNA
adducts in blood.
Seasonality in DNA adduct levels has been observed

and may be linked to the variability in air quality and
human behavior, determining exposure between, for
instance, summer and winter. The same variability with
season could also be attributable to dietary habits. It is
still insufficiently clear which factors contribute to the
large interindividual variation in DNA adduct levels that
is observed even when people are apparently exposed to
similar doses of genotoxins.
Therefore, we have conducted a large pooled analysis

in healthy individuals (�3,600 subjects) recruited in the
context of case–control, cross-sectional, or cohort studies,
with the purpose of validating or refuting previous find-
ings in a sufficiently powered data set (8, 9, 11, 12, 16–29).

Methods

We have identified 11 study cohorts, investigated in 18
publications, listed in Table 1, in which bulky DNA
adducts were measured by 32P-postlabeling (41), and a
similar set of variableswas available, including individual
data on age, gender, ethnicity, batch, smokinghabits, BMI,
and season of blood collection, and a limited set of gene
variants.We contacted the principal investigators of these
studies and had access to the original data sets. The study
characteristics are briefly described in Table 1.

In most of the studies, measurement of bulky adducts
by 32P-postlabeling was achieved using the nuclease P1
digestion method of enrichment, although butanol
extraction was used in the study of Bak and coworkers
(20). In each investigation, subjects were enrolled after
signing informed consent. Data sets were transferred to
the ISI Foundation for analysis after being anonymized.

There were some differences in the mean levels of
adducts among the studies, with the U.S. study showing
the highest values (23, 24). This is most likely due to
interlaboratory differences rather than to actual, expo-
sure-related differences in DNA adduct levels, which
have been expressed in the text as RAL (relative adduct
labeling) � 108 bases, if not specified otherwise. We
addressed this problem in 3 ways: 1) in the main analysis,
data were normalized after pooling, assuming different
measurement units in the different laboratories, accord-
ing to the following formula:

RALst ¼ ðRAL�MeanicÞ
SDic

where RAL is the relative adduct labeling; andMeanic and
SDic mean and standard deviation of the group of subjects
in the ith study. The rationale for using normalized values

Table 1. Description of the studies

Name (references) Population n (%) of mena Cells Smoking habits

EPIC Spain (16, 17) Spain 296 (50.34) WBC NS 174 EX 48 SM 74
Denmark study (20) Denmark 255 (53.7) WBC (BE) NS 9 EX 56 SM 185 5 missing
Turin Bladder Case Control

study (8, 21) Unpublished results
Italy 104 (100) WBC NS 29 EX 59 SM 24

EPIC Italy (9, 22) Italy 634 (76.3) WBC NS 255 EX 204 SM 171 4 missing
GENAIR (12) West Europe 1,086 (51.75) WBC NS 593 EX 492 1 missing
U.S. study (23, 24) USA 173 (100) WBC NS 32 EX 72 SM 67 2 missing
Greece study (18) Greece 194 (30) Lymph NS 194
The Netherlands study (19) The Netherlands 41 (34.14) Lymph NS 5 SM 35 1 missing
Czech Republic study (11, 25, 26)

Unpublished results
Czech Republic 360 (100) Lymph NS 330 SM 60

East Europe study (27, 28) East Europe 354 (100) Lymph NS 212 SM 137 5 missing
Spain study (29) Spain 76 (93) Lymph NS 31 EX 45
Total 3,573

Abbreviations: lymph, lymphocytes; NS, never smokers; EX, ex-smokers; SM, current smokers; BE, butanol enrichment.
aFrom published work.
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and quartiles to standardize genetic pooled analysis has
been put forward previously by several authors and this
approach has become common practice (4, 30–32).
Because after standardization, the skewness of the dis-
tribution of RALst was still high (2.9), we compared
standardized values of adduct levels using the nonpara-
metric Kruskal–Wallis test; 2) we repeated all the statis-
tical analyses excluding the study from the United States
in which DNA adduct data were on average 8-fold higher
than in the other studies (see Table 2); 3) for those studies
in which DNA adduct analyses were conducted in differ-
ent laboratories but using samples from the same popula-
tions (EPIC Spain and GENAIR in Spanish populations
and Turin Bladder Case Control study, EPIC Italy, and
GENAIR in Italianpopulations), we have applied analysis
of variance (ANOVA) to compare the area effect with the
laboratory effect.

In addition to descriptive statistics and ANOVA, we
stratified univariate analyses and multivariate regression
models by smoking habits, excluding those studies in
which blood samples were not collected in all seasons
(Greece, Czech Republic, and East Europe studies). In the
multivariate model, we included sex, age, and season-
ality. To control for heterogeneity among studies, we also
considered multivariate regression models including the
variable "study" as having a random effect. Finally, we
conducted a logistic regression analysis in which the
response variable was 0 or 1 if the RAL value was below
or above the median value, respectively.

All statistical analyses were conducted using SAS soft-
ware (v.9.1.3).

Results

Table 2 shows the mean (SD) adduct levels for the
studies that were included in the analysis. There are

relatively small variations among the studies except for
the U.S. cohort that has adduct levels about a factor 8
higher than others. For this reason in the subsequent
analyses, we use normalized levels. No statistically sig-
nificant difference in DNA adduct levels with gender and
BMI was observed (Table 3). Age showed a borderline
significant association (P ¼ 0.09), although no clear trend
was observed. Seasonality (i.e., the season in which blood
was drawn) and smoking (with higher levels in never
smokers) were significantly associated with DNA
adducts, P ¼ 0.006 and 0.0003, respectively. Among the
genetic variants that were analyzed in these studies, no
statistically significant difference in DNA adduct levels
with the variant genotypes was found (Table 4).

To verify whether the finding on smoking is true and
not an artificial effect due to the statistical correction, we
stratified the analysis between studies in which DNA
adducts were measured in WBC and those in which they
were measured in lymphocytes and we obtained the
same trend as in the global analysis.

In the stratified multivariate analysis (Table 5), we
observed an effect of seasonality in nonsmokers, with
the lowest levels in the spring (P ¼ 0.02), and an effect of
sex, with women having higher levels, among current
smokers (P¼ 0.01). The corresponding odds ratios (above
vs. below the adduct median) were 0.74 (95% CI ¼ 0.52–
1.04) for spring vs. winter and 1.40 (95% CI ¼ 0.97–2.00)
for women vs. men. The R2 (a measure of variance
explained by the model) was very small for all models
presented, always less than 0.02. Multivariate analysis for
smoking showed a significant negative b value (�0.086, P
< 0.001). Multivariate regression analysis including the
variable "study" as having a random effect showed essen-
tially similar results. ANOVA was conducted separately
for the recruitment centers for which subpopulations
were analyzed in different laboratories or in the same

Table 2. Studies included in the analyses

Study No. of subjectsa RAL

Mean SD

EPIC Spain (WBC) 296 0.83 0.66
Denmark study (WBC) 255 0.23 0.15
Turin Bladder Case Control study (WBC) 104 0.43 0.50
EPIC Italy (WBC) 634 0.78 1.00
GENAIR (WBC) 1,086 0.70 0.55
U.S. study (WBC) 173 6.85 12.56
Greece study (L) 194 1.22 0.89
The Netherlands study (L) 41 1.53 0.56
Czech Republic study (L) 420 1.48 0.85
East Europe study (L) 354 1.06 0.40
Spain study (L) 76 0.23 0.58
Total 3,633 1.13 3.12

Abbreviations: WBC, white blood cells (buffy coat); L, lymphocytes.
aMean values of RAL expressed as adducts per 108 nucleotides.
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Table 4. Median RAL values according to genetic data

No. of subjects Median RAL (SD) P

CYP1A1M1 (EPIC Spain, GENAIR, U.S. study)
Wt 1,216 0.70 (4.76) 0.68

Het 256 0.80 (4.74)
Mut 15 0.60 (1.04)

GSTM1 (EPIC Spain, the Netherlands study, GENAIR, U.S. study, Czech Republic study, East Europe study)
Null 1,157 0.90 (2.58) 0.39
Present 1,071 0.94 (4.93)

GSTT1 (EPIC Spain, Greece, Turin Bladder Case Control study, GENAIR, Czech Republic study, East Europe study)
Null 775 0.91 (0.66) 0.21
Present 1,527 0.80 (0.75)

MPO (Turin Bladder Case Control study, GENAIR)
Wt 677 0.60 (0.52) 0.86
Het 406 0.50 (0.56)
Mut 49 0.60 (0.79)

NQO1 (Greece, GENAIR)
Wt 769 0.67 (0.66) 0.87
Het 390 0.64 (0.60)
Mut 47 0.60 (0.63)

NOTE: Univariate analysis. P value from Kruskal–Wallis test, based on RAL standardized values.
Abbreviations: Wt, wildtype; Het, heterozygous; Mut, homozygous variant; CYP1A1M1, cytochrome P450, family 1, subfamily A,
polypeptide 1, T6235C transition; GSTT1, glutathione S-transferase theta 1; GSTM1, glutathione S-transferase mu 1; NQO1, NAD(P)
H dehydrogenase, quinone; MPO, myeloperoxidase.

Table 3. Median RAL values according to selected individual characteristics

No. of subjects Median RAL (SD) P

Sex (all)
Male 2,352 0.83 (3.83) 0.65
Female 1,281 0.60 (0.79)

Age (all)
1 quartile 905 1.01 (0.83) 0.09
2 quartile 945 0.70 (1.29)
3 quartile 872 0.60 (3.29)
4 quartile 909 0.50 (5.12)

Season (all)
Spring 696 0.50 (2.70) 0.006
Summer 599 0.64 (3.82)
Autumn 764 0.70 (5.06)
Winter 1,232 0.85 (1.12)

BMI (EPIC Spain, Greece, GENAIR, EPIC Italy)
1 quartile 532 0.69 (0.93) 0.91
2 quartile 533 0.60 (0.75)
3 quartile 537 0.60 (0.70)
4 quartile 535 0.60 (0.65)

Smoking status (all)
Never 1,771 0.88 (1.40) 0.0003
Ex 1,043 0.54 (5.28)
Current 781 0.67 (1.58)

NOTE: Univariate analysis. P value from the Kruskal–Wallis test, based on RAL standardized values.
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laboratory at different times (simulating a batch effect;
EPIC Spain, Turin Bladder Case Control Study, EPIC
Italy, and GENAIR). The effect of center was greater than
the effect of batch or laboratory (F ¼ 9.26, P < 0.0001 for
center; F ¼ 6.65, P ¼ 0.0002 for laboratory).
We also analyzed the nonstandardized RAL values,

adjusting for laboratory effect and cell type, across Eur-
ope. Adduct levels were 0.60 (median ¼ 0.40, SD ¼ 0.54)
in northern Europe (the Netherlands and Denmark) and
0.79 (median¼ 0.60, SD¼ 0.84) in southern Europe (Italy,
Spain, France, and Greece), with a P value for the differ-
ence of 0.001.

Discussion

PAHs are an important class of environmental carcino-
gens, capable of inducing DNA adducts after metabolic
activation (33). These may occur in fried and charcoal-
grilled meat or in the food chain as a result of environ-
mental pollution (34–36). As a result, human exposure to
PAHs is widespread andmay occur via inhalation, inges-
tion, or via dermal contact. The latter seems less relevant
for the general population but may be of relevance in
certain groups such as in occupational settings or after
treatment with coal tar ointments. These exposures are
thought to contribute to cancer incidence in the general
population, as the most important targets for PAH carci-
nogenicity include lung and possibly bladder (1). Some
evidence has also been reported for an association
between dietary PAHs and colon cancer or adenomas
(37, 38). Increased levels of bulky DNA adducts have
been detected in the colon mucosa of colon cancer
patients and in early stages of colon carcinogenesis (39,
40). More thorough understanding of factors that deter-
mine DNA adduct levels may thus contribute to
improved preventive measures.
The 32P-postlabeling assay is a complex procedure

involving several steps (41). Although guideline proto-
cols have been devised and tested in interlaboratory trials
(42), there is no consensus on conditions for analysis or
methods for quantitation. For the latter, differences
between studies may reside in how DNA adduct levels
are calculated from the levels of radioactivity detected on
thin-layer chromatography (TLC) plates; different
approaches include separate assessment of the incorpora-
tion of radioactivity into normal nucleotides or determi-
nation of the specific activity of the [g-32P]ATP used. It is
also not clear which areas of the TLC plates were
included in the quantitation; this can be of some impor-
tance in cases, such as here, in which DNA adduct
patterns may be weak and diffuse. For the purposes of
pooled analysis, however, interlaboratory differences can
be accommodated by normalizing results, as was done in
the present study.
The present study is the largest pooled analysis avail-

able on bulky DNA adducts (�3,600 subjects) and shows
only weak associations. The analysis restricted to studies
having data for every season confirms an associationwith

the season at the time of blood collection, as suggested in
previous smaller studies. In nonsmokers, we found sig-
nificantly lower DNA adduct levels in spring (P ¼ 0.02)
than in winter, with a seasonal gradient similar to the one
shown for median levels in Table 3. This may have 2
alternative explanations: the first is a protective effect of
seasonal dietary intakes such as fresh fruit and vegeta-
bles, although this is less likely to peak in the springwhen
the lowest RAL were observed. Such a protection has
been suggested in previous investigations (8–11) but
could not be tested directly in the current analysis
because the data sets are too heterogeneous in the way
dietary data were collected. The second potential expla-
nation is a higher level of bulky adducts in some seasons
due to higher levels of exposure to pollution, particularly
to particulate-bound PAHs. This can be due to seasonal
differences in emissions, weather conditions, and/or out-
door human activity. This hypothesis seems to be sup-
ported by some of the previous investigations (33) and is
confirmed by a comparison among the areas forwhichwe
had adduct measures from different laboratories. In fact,
after adjusting for the laboratory effect and cell type,
mean adduct levels were 0.60 (median ¼ 0.40, SD ¼
0.54) in northern Europe (the Netherlands and Denmark)
and 0.79 (median ¼ 0.60, SD ¼ 0.84) in southern Europe
(Italy, Spain, France, and Greece), a trend that corre-
sponds to the different levels of PM2.5, PM10, and
NO2 that have been observed across Europe. According
to a recent comprehensive report, PM2.5 concentrations,
for example, are clearly greater in cities from southern
Europe (with peaks of >40 mg/m3 in Turin, Italy) than in
cities form northern Europe (43).

The observation of lower adducts in smokers com-
pared with nonsmokers, is counterintuitive. A first obser-
vation can be that current smokers are less represented in
our sample. Moreover, nucleotide excision repair capa-
city is one of the factors that could contribute to indivi-
dual variation in tobacco-related biomarkers. Previous
studies have shown that smokers (particularly current
smokers) tended to have more proficient DNA repair
capacity (DRC) than nonsmokers, suggesting that smo-
kers may have an adaptive response to DNA damage
induced in blood cells by chronic tobacco carcinogen
exposure. In particular, higher DRC was shown in smo-
kers in in vitro–induced Benzo[a]pyrene diol epoxide
(BPDE)-adduct repair (44); in oxidative damage repair
(45, 46); in 4-aminobiphenyl adduct repair, also related to
smoking habits (47); and in the g-radiation repair model
(48). The hypothesis that the induction of DNA damage
by smoking can stimulate cellular repair activity could
explain the significantly higher DNA adduct levels in
nonsmokers than in smokers (P ¼ 0.0003) in our pooled
analysis.

Recently, it has been shown that phase II enzymes can
be induced by PAHs found in cigarette smoke (49). These
enzymes are involved in the process of detoxification of
numerous carcinogens such as PAHs and aryl- and het-
erocyclic amines (50), and their induction by tobacco
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smoke could be an alternative explanation for the smok-
ing effect in our study, in which preferential induction of
phase II enzymes can lead to more rapid clearance of
PAHs prior to adduct formation. Moreover, interindivi-
dual differences exist in the levels of expression and
catalytic activities of a variety of xenobiotic-metabolizing
enzymes in humans and these phenomena are thought to
be critical in understanding the basis of different suscept-
ibilities of individuals to PAH action (51).

Conclusions

In this large pooled analysis, we have reported only
weak associations between bulky DNA adducts and
exposure variables, namely, seasonality. Most compari-
sons were negative and also the R2 of all regression
models was extremely small (>0.02), suggesting that

the part of variance explained by these models is very
modest. Air pollution may partly explain some of the
inter-area differences (between north and south Europe),
but most inter-area and inter-individual variations in
adduct levels still remain unexplained.
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