BRCA1 Breast Cancer Risk Is Modified by CYP19 Polymorphisms in Ashkenazi Jews

Leon Raskin, Flavio Lejbkowicz, Ofra Barnett-Griness, Sara Dishon, Ronit Almog, and Gad Rennert

Clalit Health Services National Cancer Control Center and Department of Community Medicine and Epidemiology at Carmel Medical Center and B. Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel

Abstract

Exposure to sex hormones is a major risk factor for breast cancer and current treatments include hormone modifying drugs, among them aromatase inhibitors. We studied the association of CYP19 (Val80 and [TTTA]_n) polymorphisms, the gene translated to aromatase, and the risk of breast cancer in BRCA carriers and noncarriers. The study consisted of 958 cancer cases and 931 healthy controls, including 474 carriers and 1,415 noncarriers. Cases and controls came from a population-based study of breast cancer in Israel, enriched with BRCA carriers from a clinical familial cancer service. Val80 G/G genotype was associated with significantly increased risk of breast cancer compared with the Val80 A/A genotype in BRCA1 carriers ages <50 years (odds ratio, 2.81; 95% confidence interval, 1.09-7.22; \(P = 0.032 \)) but not in BRCA2 carriers or noncarriers of any age. A similar magnitude suggestive association, although nonstatistically significant, was found between Val80 polymorphism and estrogen receptor-negative status of the breast tumors. A common haplotype composed of the Val80 G allele and three haplotype-tagging single nucleotide polymorphisms (rs727479, rs10046, and rs4646) in the CYP19 coding region showed a trend to association with breast cancer risk in BRCA1 carriers ages <50 years. Published expression data show higher estrogen levels with higher repeats in [TTTA]_n found in linkage disequilibrium with Val80. The present study suggests that the CYP19 Val80 polymorphism and a haplotype that includes this polymorphism are associated with increased breast cancer risk in young women with BRCA1 mutations. (Cancer Epidemiol Biomarkers Prev 2009;18(5):1617–23)

Introduction

Breast cancer is one of the leading causes of cancer morbidity and mortality worldwide (1). In the past decade, two major genes have been shown to be related to breast (and ovarian) cancer susceptibility, BRCA1 and BRCA2 (2). Three Ashkenazi Jewish founder mutations in these genes (BRCA1: 185delAG and 5382insC and BRCA2: 6174delT) have a combined frequency of 2.5% in the Ashkenazi population and appear in ~10% (3-5) of breast cancer cases in Ashkenazi Jewish women. Estimates of penetrance vary greatly across different studies, ranging from 37% to 90% (6-12). This heterogeneity in risk among women who carry BRCA1/2 mutations suggests the existence of modifying genetic and/or environmental factors. Polymorphisms in several genes have been suggested to modify breast and ovarian cancer risk in BRCA1 and BRCA2 carriers, although most have not been replicated (13-21). The only confirmed breast cancer risk modifier is RAD51 135G>C (22). No studies have, as yet, evaluated the association between polymorphisms in the genes involved in estrogen metabolism and breast cancer risk in BRCA mutation carriers.

Because estrogens play an important role in carcinogenesis and progression of breast cancer (23, 24), genes encoding for enzymes involved in estrogen biosynthesis and metabolism are plausible candidates as breast cancer susceptibility genes. One such candidate is CYP19 (p450arom), which encodes for aromatase, an enzyme that converts androgens to estrogens. The association of polymorphisms in the CYP19 with breast cancer risk has previously been studied, with particular focus on the [TTTA]_n repeats polymorphism (25-31). A single study observed a slightly higher [TTTA]_7 allele frequency among breast cancer cases in the Caucasian population (31). In this study, the allele A of the silent variant at exon 3 [rs700518 (Val80Val)] is in complete linkage disequilibrium (LD) with [TTTA]_7. Subsequent studies of [TTTA]_n repeats showed inconsistent results. The following alleles have been implicated as possible breast cancer susceptibility alleles: [TTTA]_delTCT and [TTTA]_10 (32, 33), [TTTA]_7 repeats (31), [TTTA]_8 and [TTTA]_10 (26, 27), [TTTA]_11 (34), and [TTTA]_12 (27, 29).

Several studies have observed an association between CYP19 polymorphisms and concentrations of serum circulating estrogen-related metabolites. The alleles [TTTA]_1 and [TTTA]_8 were associated with lower estrogen levels; conversely, the alleles [TTTA]_6 [TTTA]_9, [TTTA]_7, and [TTTA]_10.
rs727479(T), rs10046(T), and rs4646(G) were associated with higher levels of estrogens (27, 35-39). The Val80 polymorphism, the [TTTA]n repeat polymorphism, CYP19 and Breast Cancer Risk in BRCA Carriers

Table 1. Study population characteristics

<table>
<thead>
<tr>
<th>BRCA status*</th>
<th>Age category (y)</th>
<th>Breast cancer† cases</th>
<th>Controls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean (SD) age</td>
<td>n</td>
<td>Mean (SD) age</td>
</tr>
<tr>
<td>BRCA1 carriers</td>
<td><50</td>
<td>83 (9.1)</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>50</td>
<td>62 (8.7)</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>145 (13.5)</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>BRCA2 carriers</td>
<td><50</td>
<td>117 (5.0)</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>50</td>
<td>618 (10.3)</td>
<td>1,204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>735 (12.8)</td>
<td>1,415</td>
<td></td>
</tr>
<tr>
<td>Noncarriers</td>
<td><50</td>
<td>41 (6.1)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>50</td>
<td>37 (8.8)</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>78 (12.5)</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

*Ashkenazi founder mutations in BRCA1 (185delAG and 5382insC) and BRCA2 (6174delT).
†Breast cancer combines breast cancer and breast/ovarian cancer cases.

Materials and Methods

Study Population. The study population included 474 Ashkenazi Jewish women (223 breast cancer cases 251 healthy controls) carrying Jewish founder mutations in the BRCA1 and BRCA2 genes and 1,415 Ashkenazi Jewish noncarrier women (733 cases and 680 controls; Table 1). Carriers were determined to have one of the three Jewish founder mutations in BRCA1 (185delAG and 5382insC) or BRCA2 (6174delT) and were cared for by the Clalit Health Services National Familial Cancer Consultation Service at the time of study. The series of 1,405 noncarriers derived from an ongoing population-based case-control study of the molecular and environmental etiology of breast cancer in Israel. In this study, which was initiated in 2000, all incident breast cancer cases in a distinct geographic region in Northern Israel are invited to participate after signing an informed consent approved by the Carmel Medical Center Institutional Review Board Committee. Controls are randomly sampled from the list of all women enrolled in the healthcare program provided by Clalit Health Services, the largest health services provider in Israel covering the majority of the Israeli population, and matched on age, residence, and Jewish/Arab status. Participants are interviewed by trained nurses to evaluate risk factors, including a detailed three-generation family history of cancer. Blood is drawn from each subject for DNA extraction and molecular analysis, including BRCA1 and BRCA2 founder mutation genotyping. DNA extracted from the blood is studied for a variety of molecular events, among them the existence of one or more of the Jewish founder mutations in the BRCA1 and BRCA2 genes. Participants who are found to be BRCA carriers are referred to the Clalit Health Services National Familial Cancer Consultation Service. This Service is a referral center, which can be approached by the population at large or by health professionals for advice. Most women who are evaluated by this service with regards to the breast/ovary syndromes either have a significant family history or have a personal history of breast cancer appearing at an early age, bilateral breast cancer, or breast cancer appearing in conjunction with ovarian cancer. Medical records were extracted, when available, for all study participants with breast cancer. Clinical data extracted from these records includes the ER and progesterone receptor status of the primary tumor when available.

The carriers group included 474 carriers of Jewish founder mutations: 296 of BRCA1 (218 of 185delAG and 78 of 5382insC) and 178 of BRCA2 (6174delT). Carriers with ovarian cancer only and two compound heterozygotes with mutations in both BRCA genes were not included into this study.
DNA Extraction and Genotyping. Genomic DNA was extracted from whole blood using a commercially available kit according to the manufacturer’s protocol (Puregene DNA extraction kit; Gentra Systems). Genetic testing for BRCA1 (185delAG and 5382insC) and BRCA2 (6174delT) was done using the Pronto BRCA kit (Pronto). Genomic DNA from breast cancer patients known to carry one of the three mutations (185delAG, 5382insC, and 6174delT) served as positive controls for each assay. All positive samples were confirmed by restriction enzyme digestion as described previously (4).

The genotyping of CYP19 rs727479 (C_4749_10), Val80 (rs700518; C_8794675_10), rs10046 (C_8234731_1_), and rs4646 (C_8234730_1_) was done by allelic discrimination using the 5'-nuclease Assay-on-Demand on 7900HT sequence detection system (Applied Biosystems). The assay was done in a 15 μL reaction volume containing 1× TaqMan PCR core reagents (Applied Biosystems), 5 mmol/L MgCl₂, 200 nmol/L each PCR primer, 100 nmol/L MGB probes (Applied Biosystems), 0.5 units AmpliTaq Gold, 0.2 units AmpErEase UNG, and 40 ng genomic DNA. The Val80 5'-nuclease assay was validated by genotyping of 587 individuals testing for polymorphism. No discrepancies were detected in the validation process.

The region of [TTTA]n repeats was amplified by PCR using the following primers: TTTA-F 5′-GCAGG-TACITAGTTAGCTAC-3′ and TTTA-R 5′-TTACAGTTAGCTAC-3′. The PCR was carried out in a total volume of 25 μL containing 3 μL DNA template (~50 ng), 10 pmol of each primer, and 1 unit Taq polymerase (TaKaRa). The reaction was incubated at 95°C for 5 min before 30 cycles of denaturation of 30 s at 95°C, annealing of 1 min at 55°C, and extension of 30 s at 72°C followed by a final extension of 10 min at 72°C. The amplified products were run on 2% agarose gels, excised, and purified by QiaGen MinElute Gel Extraction Kit (Qiagen). The cleaned PCR products were sequenced at Weizmann Institute DNA Sequencing Service.

Statistical Methods. Hardy-Weinberg equilibrium was tested in controls using the χ² goodness-of-fit test. CYP19 (Val80) genotype frequencies were compared between cases and controls using the Pearson χ² test and Armitage’s test for trend. Genotype odds ratios (OR) and their 95% confidence intervals (95% CI) were obtained using logistic regression, with Val80 A/A genotype as the reference category.

Multivariate logistic regression was used to adjust OR estimates for age and to test for gene-gene interaction. Genotype tests and trend tests were done using number of Val80 G alleles as categorical and continuous variable, respectively.

The carriers group included 474 women clustered in 341 families. To take into account the possible correlations within these families, we applied logistic regression models for correlated data (GEE model, SAS Genmod). As these additional analyses gave similar results to the ordinary logistic regression results, only the latter are presented.

The distribution of [TTTA] alleles was compared between cases and controls using Pearson χ² test and Armitage’s trend test. Exact test was employed when appropriate. Logistic regression based on allelic data was used to estimate ORs per 1 repeat increase. For this purpose, number of repeats was considered as a continuous variable and the associated P value was reported as P_trend. When the global test for association was significant, allelic OR of a specific

Table 2. CYP19 Val80 genotype and breast cancer risk in BRCA1/2 carriers and noncarriers

<table>
<thead>
<tr>
<th>BRCA1/2 status</th>
<th>Val80 genotype</th>
<th>Cases/controls</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>P_trend</th>
</tr>
</thead>
<tbody>
<tr>
<td><50 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA1 carriers</td>
<td>A/A</td>
<td>15/24</td>
<td>Reference</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>39/54</td>
<td>1.41 (0.61-3.26)</td>
<td>0.418</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>27/19</td>
<td>2.81 (1.09-7.22)</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>81/97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA2 carriers</td>
<td>A/A</td>
<td>10/13</td>
<td>Reference</td>
<td>0.888</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>22/29</td>
<td>1.21 (0.42-3.47)</td>
<td>0.719</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>8/15</td>
<td>0.91 (0.26-3.20)</td>
<td>0.885</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>40/57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noncarriers</td>
<td>A/A</td>
<td>28/26</td>
<td>Reference</td>
<td>0.628</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>67/51</td>
<td>1.22 (0.59-2.38)</td>
<td>0.549</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>22/17</td>
<td>1.20 (0.51-3.21)</td>
<td>0.664</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>117/94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥50 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA1 carriers</td>
<td>A/A</td>
<td>15/12</td>
<td>Reference</td>
<td>0.321</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>33/25</td>
<td>1.05 (0.42-2.63)</td>
<td>0.922</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>13/17</td>
<td>0.6 (0.21-1.71)</td>
<td>0.336</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>61/54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA2 carriers</td>
<td>A/A</td>
<td>9/10</td>
<td>Reference</td>
<td>0.946</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>20/27</td>
<td>0.82 (0.28-2.39)</td>
<td>0.716</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>7/8</td>
<td>0.98 (0.25-3.82)</td>
<td>0.978</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>36/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noncarriers</td>
<td>A/A</td>
<td>153/146</td>
<td>Reference</td>
<td>0.346</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/A</td>
<td>299/303</td>
<td>0.94 (0.69-1.24)</td>
<td>0.677</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>166/137</td>
<td>1.16 (0.83-1.63)</td>
<td>0.366</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>618/586</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Adjusted for age.
repeat was estimated, where the group with
[TTTA]? and [TTTA]?delTCT alleles served as a reference
category.

We used the haplo.stats package (45) for R for
reconstruction of haplotypes and analysis of their
potential association with breast cancer. Haplotype
frequencies were estimated and compared using
age-adjusted global and haplotype-specific score tests
("haplo.score" function). Rare haplotypes (combined
frequency <10%) were pooled. In addition, based on
inferred haplotype data, possible haplotype pairs
and their posterior probability were calculated using
the haplo.em function in R. A continuous variable
counting the number of haplotype copies as well as
indicators for one and two copies were created. Expectations of these variables were computed
for each subject to account for the haplotype ambigu-
sity. Using logistic regression, expected haplotype
values were used to estimate age-adjusted ORs in both
log-additive and dominant model. Pairwise LD (\(D^\prime\) and
\(r^2\)) between the haplotype-tagging SNPs was tested
using the \(m^2\) statistic for LD in the "genetic" package
for R.

In all analyses, \(P\) values < 0.05 were considered
statistically significant. Unless otherwise specified, all
results are age-adjusted. Analyses were done in SPSS
(version 14) and SAS (version 9.1).

Results

The frequency of the CYP19 Val\(^{80}\) G allele among
controls was 50% in BRCA1 carriers, 50% in BRCA2
carriers, and 49% in noncarriers. CYP19 genotypes did
not deviate from the Hardy-Weinberg equilibrium in
controls.

In all BRCA1 mutation carriers, CYP19 Val\(^{80}\) was not
associated with breast cancer risk (OR per G allele
increase, 1.17; 95% CI, 0.83-1.63; \(P = 0.370\)). However, it
was found that, among the 180 BRCA1 carriers ages <50
years, the Val80 G allele was associated with increased
breast cancer risk (\(P\) trend = 0.028; G/G versus A/A; OR,
2.81; 95% CI, 1.09-7.22; \(P = 0.032\); Table 2). No significant
association between CYP19 Val\(^{80}\) and breast cancer risk
was found in either BRCA1 carriers of older age (age
\(\geq 50\) years; \(P\) trend = 0.321) or BRCA2 carriers (\(P\) trend =
0.888 and 0.946 for ages <50 and \(\geq 50\) years, respectively;
Table 2). There was no difference between cases and
controls in Val80 genotype distribution among the non-
carriers of BRCA1/2 mutations (\(P\) trend = 0.300, 0.628, and

Table 3. CYP19 Val\(^{80}\) genotype and ER-negative status in BRCA1/2 carriers

<table>
<thead>
<tr>
<th>BRCA1/2 status</th>
<th>Val(^{80}) genotype</th>
<th>ER(-)</th>
<th>ER(+)</th>
<th>OR (95% CI)</th>
<th>(P)</th>
<th>(P) trend</th>
</tr>
</thead>
<tbody>
<tr>
<td><50 y</td>
<td>A/A</td>
<td>6</td>
<td>4</td>
<td>1.00</td>
<td>0.173</td>
<td></td>
</tr>
<tr>
<td>BRCA1 carriers</td>
<td>G/A</td>
<td>21</td>
<td>7</td>
<td>1.95 (0.40-9.44)</td>
<td>0.405</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>16</td>
<td>3</td>
<td>3.53 (0.58-21.51)</td>
<td>0.171</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>43</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\geq 50) y</td>
<td>A/A</td>
<td>7</td>
<td>5</td>
<td>1.00</td>
<td>0.747</td>
<td></td>
</tr>
<tr>
<td>BRCA1 carriers</td>
<td>G/A</td>
<td>14</td>
<td>11</td>
<td>0.75 (0.18-3.21)</td>
<td>0.697</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G/G</td>
<td>7</td>
<td>5</td>
<td>0.76 (0.14-4.09)</td>
<td>0.746</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>28</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Adjusted for age.

The haplotypes consist of haplotype-tagging SNPs tagging haplotype block 4 of CYP19 gene that cover the entire coding region of the gene: rs727479, rs700518 (Val\(^{80}\)), rs10046, and rs4646. Note that Val\(^{80}\) (rs700518) was not included by Haiman et al. (44) to haplotype-tagging SNPs.

Table 4. CYP19 coding region TGTG haplotype and breast cancer risk in BRCA1 carriers before and after age 50 y and BRCA2 carriers

<table>
<thead>
<tr>
<th>Haplotypes</th>
<th>Frequency</th>
<th>OR (95% CI)</th>
<th>(P)</th>
<th>(P) trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case (%)</td>
<td>Control (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA1 <50 y</td>
<td>Other/other</td>
<td>21.5</td>
<td>30.7</td>
<td>Reference</td>
</tr>
<tr>
<td>TGTG/other</td>
<td>50.8</td>
<td>50.7</td>
<td>1.63 (0.72-3.66)</td>
<td>0.241</td>
</tr>
<tr>
<td>TGTG/TGTG</td>
<td>27.7</td>
<td>18.5</td>
<td>2.42 (0.95-6.16)</td>
<td>0.063</td>
</tr>
<tr>
<td>BRCA1 >50 y</td>
<td>Other/other</td>
<td>28.6</td>
<td>25.4</td>
<td>Reference</td>
</tr>
<tr>
<td>TGTG/other</td>
<td>53.7</td>
<td>50.6</td>
<td>0.94 (0.38-2.30)</td>
<td>0.887</td>
</tr>
<tr>
<td>TGTG/TGTG</td>
<td>17.7</td>
<td>24.0</td>
<td>0.65 (0.22-1.93)</td>
<td>0.440</td>
</tr>
<tr>
<td>BRCA2 <50 y</td>
<td>Other/other</td>
<td>32.2</td>
<td>24.9</td>
<td>Reference</td>
</tr>
<tr>
<td>TGTG/other</td>
<td>48.3</td>
<td>50.6</td>
<td>0.99 (0.36-2.75)</td>
<td>0.983</td>
</tr>
<tr>
<td>TGTG/TGTG</td>
<td>19.4</td>
<td>24.5</td>
<td>0.85 (0.25-2.93)</td>
<td>0.793</td>
</tr>
<tr>
<td>BRCA2 >50 y</td>
<td>Other/other</td>
<td>25.7</td>
<td>25.5</td>
<td>Reference</td>
</tr>
<tr>
<td>TGTG/other</td>
<td>60.8</td>
<td>61.4</td>
<td>0.98 (0.34-2.83)</td>
<td>0.973</td>
</tr>
<tr>
<td>TGTG/TGTG</td>
<td>13.5</td>
<td>13.1</td>
<td>1.03 (0.23-4.38)</td>
<td>0.965</td>
</tr>
</tbody>
</table>

NOTE: Adjusted for age.

The haplotypes consist of haplotype-tagging SNPs tagging haplotype block 4 of CYP19 gene that cover the entire coding region of the gene: rs727479, rs700518 (Val\(^{80}\)), rs10046, and rs4646. Note that Val\(^{80}\) (rs700518) was not included by Haiman et al. (44) to haplotype-tagging SNPs.
Of the 956 breast cancer cases in the study, ER status was available for 772 (81%) cases (108 BRCA1 carriers, 55 BRCA2 carriers, and 609 noncarriers). There were 18 (2.9%) tumors diagnosed with ductal carcinoma in situ. Tumors were ER-negative in 67% of the BRCA1 carriers (72 of 108), 29.1% of the BRCA2 carriers, and 20.4% of the noncarriers. A case-only analysis of BRCA1 carriers ages <50 years showed a trend toward association between Val⁸⁰ G/G and ER-negative tumors although not statistically significant (G/G versus A/A; OR, 3.53; 95% CI, 0.58-21.51; P = 0.171; P trend = 0.173; Table 3).

We genotyped haplotype-tagging SNPs in haplotype block 4 covering the CYP19 coding region [rs727479, rs700518 (Val⁸⁰), rs10046, and rs4646] and reconstructed haplotypes. Haplotype analysis of the younger BRCA1 carriers showed an increase trend in breast cancer risk associated with the common TGTG haplotype (frequency, 48.1%; OR per haplotype copy, 1.56; P trend = 0.066; OR for TGTG haplotype homozygotes versus no copies of TGTG, 2.42; 95% CI, 0.95-6.16; P = 0.063; Table 4). This is consistent with the suggestive association between the rs10046 T allele and risk of breast cancer among younger BRCA1 carriers (P trend = 0.062; OR for T/T versus C/C, 2.46; 95% CI, 0.96-6.28; P = 0.060) and the OR of rs4646 G/G versus T/T was 2.69 (95% CI, 0.72-10.05; P = 0.140; data not shown). The intron 4 [TTTA]_β polymorphism was genotyped in a subset of 104 noncarriers and 284 BRCA1 carriers and was found to be in complete LD with CYP19 Val⁸⁰. A higher number of repeats (>7) was linked with the Val⁸⁰ G allele (D' = 1; r² = 1; data not shown). The rare [TTTA]_β allele was not found in our sample. Among the younger BRCA1 mutation carriers, increasing number of repeats tended to be associated with increased breast cancer risk (OR per 1 repeat increase, 1.18; P = 0.053; data not shown).

Discussion

In the present study, we found an association between SNPs and haplotypes of the CYP19 gene and breast cancer risk in BRCA1 mutation carriers ages <50 years. Although many studies have been published supporting the role of CYP19 polymorphisms in breast cancer (26, 27, 29, 31-33), the modifying effect of these polymorphisms on BRCA1-related breast cancer risk had not been previously studied. Our finding may shed light on possible mechanisms by which the penetrance of BRCA mutations is altered. Such partial penetrance reflects the possible existence of modifying genes or lifestyle factors whose role of BRCA may bring to conclusion about higher frequency of breast cancer in the general population may bring to conclusion about higher frequency of phenocopies among women with postmenopausal breast cancer. From this point of view, the association shown in our study of CYP19 polymorphisms with breast cancer risk among premenopausal women is reasonable. In addition, a recent study found the association of CYP19 rs10046 T/T with elevated breast cancer risk in middle age group (ages 45-54 years; ref. 47).

The association of CYP19 with breast cancer risk was found in BRCA1 carriers ages <50 years but not in BRCA2 carriers. This agrees with known biological and clinical differences between breast tumors in BRCA1 and BRCA2 carriers (2). BRCA1-related tumors are more commonly ER-negative, differently related to reproductive risk factors, less often detected by mammography, and more commonly involve ovarian cancers than are BRCA2-related tumors. These differences may be attributed to differences in estrogen metabolism or availability.

The complete LD between [TTTA]_β repeats and Val⁸⁰ observed in our study is in line with former reports (26, 27, 29, 31-34). Several studies found an association between shorter [TTTA]_β alleles ([TTTA]_β and [TTTA]_β-9) and lower blood estrogen levels, whereas longer alleles ([TTTA]_β-8 and [TTTA]_β-9) were found to be associated with higher blood estrogen levels (27, 35, 38). These observations support our finding that the Val⁸⁰ G allele (and therefore [TTTA]_β-7 alleles) increases the risk of breast cancer compared with shorter [TTTA]_β- allele, which may be due to higher lifetime exposure to estrogens. Furthermore, our results show a suggestive positive association between the Val⁸⁰ G/G genotype ([TTTA]_β-7 homozygotes) and ER-negative tumors in young BRCA1 carriers. Although this association did not reach statistical significance, this may be due to a lack of power from missing data on tumors collected at the beginning of the study. A potential association between Val⁸⁰ G/G genotype and ER-negative tumors would have implications for our understanding of the factors that cause a breast cancer cell to develop into an ER-positive or ER-negative tumor. Higher circulating levels of estrogens associated with [TTTA]_β-7 homozygotes (or Val⁸⁰ G/G) in ER-negative tumors can thus be a key element in the tumor microenvironment directing its receptor commitment.

Suitability for hormonal chemoprevention or treatment with selective ER modulators or aromatase inhibitors is another implication of the potential association between Val⁸⁰ and ER status. Whereas most studies show that ER-negative tumors do not respond to hormonal interventions, one case-control study (48) in BRCA carriers suggested the opposite. The role of estrogen in BRCA1-related breast cancer pathogenesis (and not in BRCA2) may depend on the direct carcinogenic effect of estrogen metabolites and not on ER binding (49). The ER-negative breast stem cells are surrounded by ER-positive cells that can exert a paracrine effect on these stem cells (49, 50). BRCA1 is potentially involved in the maturation of ER-negative stem cells into mature ER-positive cells (42). In BRCA1 mutation carriers, the differentiation is impaired (51) and the enlarged pool of stem cells has greater chance of malignant transformation. The higher estrogen levels potentially associated with the Val⁸⁰ G/G genotype can promote the synthesis of growth factors (such as epidermal growth factors and insulin-like growth factors) by ER-positive mature breast cells surrounding ER-negative stem cells (52). Growth factors could further enhance stem cells proliferation, which in turn could increase the rate of stem cell transformation.

In spite of the demonstrated modifying effect of Val⁸⁰ and [TTTA]_β polymorphisms, it is likely that the biologically functional change in the aromatase protein is due to...
an unknown causal allele in the coding region of CYP19, related to the risk haplotype TGTG. Breast cancer risk modification seems to be restricted to two SNPs of these haplotypes, Val80 (rs700518) and rs10046 (3'-untranslated region). These SNPs are in very strong LD (D² = 0.93, r² = 0.88) and cover almost the entire coding region of CYP19 from exons 3 to 10. Nevertheless, our findings provide what seems to be a breast cancer risk modifier for younger women carrying BRCA1 gene mutations.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

References

45. Schaid DJ, Rowland CM, Tines DE, Poland GA. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002;70:425–34.

BRCA1 Breast Cancer Risk Is Modified by CYP19 Polymorphisms in Ashkenazi Jews

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/18/5/1617

Cited articles
This article cites 52 articles, 19 of which you can access for free at:
http://cebp.aacrjournals.org/content/18/5/1617.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/18/5/1617.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.