Null Results in Brief

Risk Factors for Pancreatic Cancer Mortality: Extended Follow-up of the Original Whitehall Study

G. David Batty,1 Mika Kivimäki,3 David Morrison,2 Rachel Huxley,4 George Davey Smith,5 Robert Clarke,6 Michael G. Marmot,3 and Martin J. Shipley3

1MRC Social and Public Health Sciences Unit and 2West of Scotland Cancer Surveillance Unit, University of Glasgow, Glasgow, Scotland, United Kingdom; 3Department of Epidemiology and Public Health, University College London, London, United Kingdom; 4The George Institute for International Health, University of Sydney, Sydney, Australia; 5Department of Social Medicine, University of Bristol, Bristol, United Kingdom; and 6Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, United Kingdom

Abstract

Given the well-established links between diabetes and elevated rates of pancreatic cancer, there are reasons to anticipate that other markers of metabolic abnormality (increased body mass index, plasma cholesterol, and blood pressure) and their correlates (physical activity and socioeconomic status) may also confer increased risk. However, to date, the results of a series of population-based cohort studies are inconclusive. We examined these associations in the original Whitehall cohort study of 17,898 men. A maximum of 38 years of follow-up gave rise to 163 deaths due to carcinoma of the pancreas. Although Poisson regression analyses confirmed established risk factor–disease associations for increasing age, smoking, and type II diabetes, there was essentially no evidence that body mass index (rate ratio, 1.01; 95% confidence interval per 1 SD increase, 0.86-1.18), plasma cholesterol (0.91; 0.78-1.07), diastolic blood pressure (0.93; 0.78-1.09), systolic blood pressure (0.98; 0.83-1.15), physical activity (sedentary versus high: 1.37; 0.89-2.12), or socioeconomic status (clerical low versus professional/executive, 0.95; 0.59-1.51) offered any predictive value for pancreatic cancer mortality. These results were unchanged following control for a range of covariates. (Cancer Epidemiol Biomarkers Prev 2009;18(2):673–5)

Introduction

Pancreatic cancer is a relatively rare malignancy but a major cause of cancer mortality worldwide (1, 2). With conventional treatments essentially ineffective (3), <4% of cases survive 5 years after diagnosis (4, 5). Despite the crucial importance of primary prevention for such a near-lethal neoplasm, little is known about its risk factors beyond increased age, family history, smoking, and diabetes (3). Obesity and physical activity, by dint of their link with diabetes, have been implicated in pancreatic cancer etiology, but findings suggest that any increased occurrence of this neoplasm in the obese may be modest (6), particularly in men (7), and evidence for physical exertion is inconclusive with both inverse (8, 9) and null (10-12) associations reported. Other metabolic abnormalities such as increased levels of blood pressure (13-15) and blood cholesterol (15-17), although examined in few studies, generally show no effect. Furthermore, the evidence that socioeconomic disadvantage, by which all of the afore described risk factors are patterned, may confer increased risk of carcinoma of the pancreas is uncertain with opposing gradients reported (10, 18).

We contribute to this highly inconclusive and scant literature, much of which is derived from underpowered studies, by focusing on the role of obesity, physical activity, increased blood pressure, elevated plasma cholesterol, and socioeconomic disadvantage as potential risk factors for pancreatic cancer in an extended follow-up of a large prospective cohort of male office workers.

Materials and Methods

In the Whitehall Study, data were collected on 19,019 male, nonindustrial, government employees with ages from 40 to 69 years at the time of examination between 1967 and 1970 in London (United Kingdom), representing a 77% response (19). This involved the completion of a study questionnaire and participation in a medical examination, both of which have been described in detail elsewhere (19). In brief, the questionnaire included inquiries regarding civil service employment grade (an indicator of socioeconomic status; ref. 20), smoking habits (21), marital status (22), and physical activity (23, 24). Blood pressure (13), height (25), weight (26), pulmonary function (indexed by forced expiratory volume in 1 s; ref. 27), and, following an overnight fast, plasma cholesterol (17) and post-challenge blood glucose

Received 10/30/08; accepted 11/7/08; published OnlineFirst 02/03/2009.
Grant support: The original screening of the Whitehall study was funded by the Department of Health and Social Security and the Tobacco Research Council. David Batty is a Wellcome Trust Fellow, Michael Marmot is a UK Medical Research Council Research Professor, Martin Shipley is supported by the British Heart Foundation, and Mika Kivimäki by the Academy of Finland.
Requests for reprints: G. David Batty, MRC Social and Public Health Sciences Unit, 4 Lilybank Gardens, Glasgow G12 8RZ, United Kingdom. Phone: 44-141-357-3949; Fax: 44-141-337-2899. E-mail: david-b@sphus.mrc.ac.uk
Copyright © 2009 American Association for Cancer Research. doi:10.1158/1055-9965.EPI-08-1032
concentration (28) were all determined using standard
techniques (19). Body mass index was computed using the
standard formula [weight (kg) / height2 (m2)].

A total of 18,863 men (99.2% of participants in the
baseline survey) were traced using the U.K. National
Health Service Central Registry and pancreatic cancer
deaths were ascertained from death certificates (coded
as ICD 8/9: 157, ICD 10: C25). The present analyses are
based on 17,898 men with complete data. The person
years of follow-up for each man was partitioned by age
at risk using 5-year age groups. To summarize the
relationship between each risk factor and pancreatic
cancer, we used Poisson regression, which produced rate
ratios with accompanying 95% confidence intervals.
These analyses were first adjusted for age at risk and
then fully adjusted for all potential confounding and
mediating factors.

Results

During a maximum of 38 years of follow-up, there were
12,797 deaths from all causes in the present analytical
sample, 163 (1.3%) of which were ascribed to pancreatic
cancer. We were able to replicate the few well-
established risk factor–disease associations for pancreatic
cancer. Thus, in age-adjusted analyses, current (rate
tool, 1.52; 95% confidence interval, 0.94-2.46) and former
smokers (1.72; 1.07-2.77) relative to nonsmokers, and
men with type II diabetes (2.47; 0.79-7.75) relative to those
who were free of this condition, all experienced an
elevated risk of this malignancy. Age itself also
revealed the expected positive association with pancreatic
cancer mortality (rate ratio per 10-year increase, 2.10;
1.79-2.46).

In Table 1, we show the associations between a series
of other potential risk factors for carcinoma of the
pancreas. Body mass index, plasma cholesterol, and
socioeconomic position were all unrelated to pancreatic
cancer risk. Similarly, neither component of blood
pressure predicted the occurrence of this malignancy.
There was a modest elevated risk in the least physically
active men that, again, did not attain statistical signifi-
cance at conventional levels, and there was no evidence
of a dose-response effect across the exercise groups.

Discussion

In this large prospective cohort study with almost
complete follow-up of its members, there was little
suggestion that a series of indicators of metabolic
abnormalities or their correlates (all of which have
been hypothesized, by us and other groups, to influence
pancreatic cancer risk), actually revealed any relationship
with this malignancy, either with or without adjustment
for potential confounders. These results accord with the
generally null findings from a series of studies for body

<table>
<thead>
<tr>
<th>Table 1. Risk factors for pancreatic cancer mortality in the original Whitehall Study (N = 17,898)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. deaths/no. men</td>
</tr>
<tr>
<td>Age-adjusted</td>
</tr>
<tr>
<td>Body mass index (kg/m2)</td>
</tr>
<tr>
<td>Tertile 1</td>
</tr>
<tr>
<td>Tertile 2</td>
</tr>
<tr>
<td>Tertile 3</td>
</tr>
<tr>
<td>Per 1 SD (2.98 kg/m2) increase</td>
</tr>
<tr>
<td>Plasma cholesterol (mmol/L)</td>
</tr>
<tr>
<td>Tertile 1</td>
</tr>
<tr>
<td>Tertile 2</td>
</tr>
<tr>
<td>Tertile 3</td>
</tr>
<tr>
<td>Per 1 SD (1.21 mmol/L) increase</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
</tr>
<tr>
<td>Tertile 1</td>
</tr>
<tr>
<td>Tertile 2</td>
</tr>
<tr>
<td>Tertile 3</td>
</tr>
<tr>
<td>Per 1 SD (13.8 mmHg) increase</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
</tr>
<tr>
<td>Tertile 1</td>
</tr>
<tr>
<td>Tertile 2</td>
</tr>
<tr>
<td>Tertile 3</td>
</tr>
<tr>
<td>Per 1 SD (21.2 mmHg) increase</td>
</tr>
<tr>
<td>Physical activity</td>
</tr>
<tr>
<td>High</td>
</tr>
<tr>
<td>Moderate</td>
</tr>
<tr>
<td>Sedentary</td>
</tr>
<tr>
<td>Socioeconomic position</td>
</tr>
<tr>
<td>Administrative (highest socioeconomic status)</td>
</tr>
<tr>
<td>Professional/executive</td>
</tr>
<tr>
<td>Clerical</td>
</tr>
<tr>
<td>Other (lowest socioeconomic status)</td>
</tr>
<tr>
<td>BC and DS1</td>
</tr>
</tbody>
</table>

*Excluding the predictor variable of interest, multiple adjustment is adjustment for body mass index, plasma cholesterol, physical activity, socioeconomic
status, diabetes/blood glucose, marital status, forced expiratory volume in 1 s, height, age at risk, smoking, and diastolic and systolic blood pressure
(estimates for components of blood pressure are not mutually adjusted).

1British Council and Diplomatic Service included as separate categories because grade levels are not comparable with other civil service departments.
mass index (in men) (ref. 7), plasma cholesterol (15-17), blood pressure (13-15), physical activity (10-12), and socioeconomic position (18)—including those from earlier follow-ups of the present cohort for some of these risk factors which were based on substantially fewer deaths (13, 20, 23, 26).

This study has several strengths, including its large sample size, which leads to a greater number of pancreatic cancer events than many other studies, prospective design, statistical control of a range of potential mediating and confounding variables, and almost complete follow-up for mortality. Weaknesses include the absence of measurement of other potential risk factors such as dietary characteristics, as well as alcohol and meat consumption (29). Although 3-day food intake diaries were in fact administered in the present study, this was only in a subset of fewer than 2,000 men (26) in which the number of pancreatic cancer deaths is too low to facilitate analyses. A second study limitation is the absence of repeat measurement of these risk factors over time, a common shortcoming in this field. However, given that this data set revealed the established risk factor–disease gradients for age, diabetes, and smoking in relation to pancreatic cancer, there is a suggestion that our null results should be trusted.

In conclusion, although confirming previously well-demonstrated risk factors–disease associations, we found little or no evidence that potentially modifiable physical characteristics (body mass index, plasma cholesterol, blood pressure, physical activity) or socioeconomic status were associated with pancreatic cancer mortality. Examination of other potential risk factors, including dietary characteristics, is important in order to increase our understanding of the etiology of pancreatic cancer and to identify targets for primary prevention.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

References

Downloaded from cebp.aacrjournals.org on July 7, 2017. © 2009 American Association for Cancer Research.
Risk Factors for Pancreatic Cancer Mortality: Extended Follow-up of the Original Whitehall Study

G. David Batty, Mika Kivimaki, David Morrison, et al.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/18/2/673

Cited articles
This article cites 28 articles, 6 of which you can access for free at:
http://cebp.aacrjournals.org/content/18/2/673.full#ref-list-1

Citing articles
This article has been cited by 8 HighWire-hosted articles. Access the articles at:
http://cebp.aacrjournals.org/content/18/2/673.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.