Ethnicity and Risk for Colorectal Cancers Showing Somatic BRAF V600E Mutation or CpG Island Methylator Phenotype

Dallas R. English,1,4 Joanne P. Young,6,7 Julie A. Simpson,1,4 Mark A. Jenkins,1 Melissa C. Southey,2 Michael D. Walsh,6 Daniel D. Buchanan,6 Melissa A. Barker,6 Andrew M. Haydon,3 Simon G. Royle,5 Aedan Roberts,6 Susan Parry,8 John L. Hopper,1 Jeremy J. Jass,9 and Graham G. Giles1,4

1Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, and 2Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne; 3Department of Medical Oncology, Alfred Hospital, Melbourne, Victoria, Australia; 4Cancer Epidemiology Centre, The Cancer Council Victoria, Carlton, Victoria, Australia; 5Murdoch Children’s Research Institute, Parkville, Victoria, Australia; 6Familial Cancer Laboratory, Queensland Institute of Medical Research; 7Faculty of Health Sciences, University of Queensland, Brisbane, Queensland, Australia; 8Department of Gastroenterology and Hepatology, Middlemore Hospital, Auckland, New Zealand; and 9Department of Cellular Pathology, St. Mark’s Hospital and Imperial College, Harrow, Middlesex, United Kingdom

Abstract

Colorectal cancers arising from serrated polyps are characterized by the CpG island methylator phenotype (CIMP) and somatic mutation (V600E) in the BRAF proto-oncogene. Few epidemiologic studies have investigated risk factors for these tumors. We conducted a cohort study of 41,328 residents of Melbourne, Australia that included 9,939 participants of southern European origin and 31,389 of Anglo-Celtic origin. Colorectal cancers arising from serrated polyps and their malignant counterparts (11-17). In addition, BRAF mutation has been identified in aberrant crypt foci, which show evidence of epithelial serration (18), suggesting that these changes are established early in colorectal carcinogenesis and induce commitment to the serrated neoplasia pathway (19).

Different molecular subsets of colorectal cancer may have different environmental, genetic, and lifestyle risk factors, and investigation of possible risk factors separately for different molecular subtypes may lead to a better understanding of how to prevent disease. For example, in Australia, men have higher incidence of colorectal cancer than women (20), but CIMP and BRAF-related tumors are more common in women (21). Smoking was associated with risk of CIMP and BRAF-related tumors in a case-control study but not with other colorectal cancers (22), although there were no clear differences in dietary risk factors between the subtypes (23).

The Melbourne Collaborative Cohort Study consists mostly of people of British or Irish descent (usually referred to in Australia as of “Anglo-Celtic” descent)
migrants to Australia from Greece or Italy (southern Europeans). The migrants were included to increase the heterogeneity of the cohort with respect to lifestyle (especially diet), genes, and rates of disease outcomes. When southern European migrants arrive in Australia, they initially have substantially lower mortality from colorectal cancer, but the differences diminish over time (24-26), suggesting that environmental factors after migration might be important risk factors.

Within the Melbourne Collaborative Cohort Study, we determined CIMP and \textit{BRAF} mutation status for colorectal cancers diagnosed during follow-up with a view to identifying those arising from the serrated pathway and determining whether their risk factors differed from the more common cancers that arise from adenomas. Here, we report on the incidence of colorectal cancer with CIMP and \textit{BRAF} mutation in relation to ethnic origin and gender.

\textbf{Materials and Methods}

\textbf{Subjects.} The Melbourne Collaborative Cohort Study is a prospective cohort study of 41,528 participants, ages 27 to 75 years at recruitment from 1990 to 1994 (almost all were ages 40-69 years), and includes 5,425 migrants from Italy and 4,535 from Greece. For this analysis, 200 participants who had a colorectal cancer diagnosed before baseline were excluded, leaving 41,328.

Subjects were recruited via the electoral rolls (registration to vote is compulsory for adults in Australia), advertisements, and community announcements in local media (e.g., television, radio, and newspapers). Comprehensive lists of Italian and Greek surnames were also used to target southern European migrants listed in the phone books and on electoral rolls. The study protocol was approved by the Cancer Council Victoria’s Human Research Ethics Committee. Participants gave written consent for participation and for the investigators to obtain their medical records.

\textbf{Baseline Data Collection.} A structured interview schedule was used to obtain information on potential risk factors including education, country of birth, alcohol consumption, smoking habits, current physical activity during leisure time, education, and, for women, reproductive history, menopausal status including age at menopause, and use of hormone replacement therapy. Information on current diet was obtained from a dietary questionnaire that contained a 121-item food frequency questionnaire that was developed for this study (27). Height, weight, and waist and hip circumference were measured.

\textbf{Cohort Follow-up and Case Ascertainment.} Cases were participants who had a first diagnosis of invasive cancer of the colon or rectum during follow-up to December 31, 2004 and were identified by linkage to population-based cancer registries in all Australian states. Addresses and vital status of the subjects were determined by record linkage to electoral rolls, the National Death Index, Victorian death records, from electronic phone books, and from responses to mailed questionnaires and newsletters.

\textbf{Molecular Pathology.} Archival tumor tissue was sought for all primary, histopathologically confirmed adenocarcinomas diagnosed in Victoria. Diagnosis was verified and pathology was reviewed by an experienced histopathologist (J.R.J.). Immunohistochemistry for DNA mismatch repair genes \textit{MLH1}, \textit{MSH2}, \textit{MSH6}, and \textit{PMS2} was done as reported by Lindor et al. (28). Microsatellite instability (MSI) was examined using 10 microsatellite markers (28). \textit{BRAF} V600E mutation analysis was done by a real-time PCR-based allelic discrimination method (29). CIMP status and \textit{MLH1} methylation was determined by MethyLight analysis of five markers (\textit{RNUX3}, \textit{CACNA1G}, \textit{SOCS1}, \textit{NEUROG1}, and \textit{IGF2}), and \textit{MLH1}, respectively (21). Exon 1 of \textit{K Ras} was analyzed by direct sequencing (21). Positive methylation measurements were determined by the presence of amplification product for the three CIMP markers and \textit{MLH1}. Samples were considered negative for methylation if no marker-specific probe amplification was seen together with the Alu reference probe displaying amplification with a Ct value <25, indicating the initial amount of bisulfite converted template was significant enough to allow the amplification and detection of the methylation markers. Tumors were classified as CIMP positive when at least three markers were positive for methylation. For participants who had both colon and rectal tumors, results for colon tumors are reported here.

\textbf{Statistical Analysis.} Ethnicity was defined based on country of birth and was classified into two groups: southern European (born in Italy or Greece) and Anglo-Celtic (born in Australia, New Zealand, United Kingdom, or Ireland).

Cox regression, with age as the time scale, was used to estimate hazard ratios (HR), 95% confidence intervals (95% CI), and \(P \) values (30). To estimate HR separately for molecular subtypes and to test their difference, Cox models based on competing risks were fitted using a data duplication method (31). Calculation of person-time began at baseline and ended at the earliest of the date of diagnosis of colorectal cancer, date of diagnosis of cancer of unknown primary site, date of death, date last known to be in Australia, or December 31, 2004. Tests based on Schoenfeld residuals and graphical methods using Kaplan-Meier curves (32) showed no evidence that proportional hazard assumptions were violated for any analyses.

Level of education, smoking status (never, former, current), alcohol intake (g/d), waist circumference, physical activity, frequency of red meat consumption, intakes of cereal fiber, calcium, dietary folate and energy, multivitamin use, calcium supplements, and, for women, hormone replacement therapy use were all considered as potential confounders. Only waist circumference and alcohol intake changed the HR for sex or ethnic origin by >10% and were retained in the final models.

Differences between characteristics of tumors for which molecular measurements were done and those for which no measurements were made were tested using \(\chi^2 \) tests for categorical variables and the Mann-Whitney rank sum test for continuous variables. All statistical tests are two sided, with \(P < 0.05 \) considered statistically significant. All statistical analyses were done in Stata version 9.2 (StataCorp).

\textbf{Results}

Baseline characteristics of the cohort by ethnic origin are shown in Table 1. Southern Europeans had larger mean...
waist circumference than Anglo-Celts and were more likely to be lifetime abstainers from alcohol, to have lower educational attainment, less likely to engage in recreational physical activity, were more likely to eat red meat frequently, had lower intakes of cereal fiber, calcium, and folate, and were less likely to use multivitamins, calcium supplements, or hormone replacement therapy. Most of the migrants had lived in Australia for >30 years (median, 33 years; interquartile range, 28-37 years).

During an average of 11 years of follow-up per person to December 31, 2004, 55 participants were known to have left Australia and 718 were diagnosed with colorectal cancer, including 449 with colon tumors (236 proximal and 173 distal), 269 with rectal tumors (three subjects had both colon and rectal tumors), and 40 with colorectal cancers of unspecified site.

Archival tissue was obtained for 656 cases (92%); of the remaining cases, 9 were diagnosed in states other than Victoria, and for 53, the material could not be found or was not provided by the pathology laboratory. Molecular analysis of archival tumor tissue was done for 585 cases for which CIMP status was determined for 579 and BRAF V600E mutation status for 582. Of those patients for whom no molecular analysis was attempted, 10 did not have a histopathologic diagnosis, and on review of the diagnostic slides, 25 were found to have metastatic disease, 11 were classified as having adenomas only, and 25 did not have tissue suitable for molecular analysis.

A slightly lower proportion of tumors from men than from women had no molecular measurements (79% versus 84%; \(P = 0.05 \)), but there was little difference in the proportions with molecular measurements by ethnicity (\(P = 0.8 \)), age at diagnosis (\(P = 0.4 \)), waist circumference (\(P = 0.1 \)), smoking status (\(P = 0.3 \)), alcohol consumption (\(P = 0.6 \)), education (\(P = 0.4 \)), physical activity (\(P = 0.3 \)), red meat consumption (\(P = 0.8 \)), or for the site (rectum, proximal, or distal colon; \(P = 0.7 \)).

CIMP and BRAF mutation status were strongly associated; 54 (74%) of 73 CIMP-positive tumors had BRAF mutations compared with 37 (7%) of 506 CIMP-negative tumors, giving an odds ratio of 36

Table 1. Baseline demographic, dietary, and lifestyle characteristics by ethnic origin

<table>
<thead>
<tr>
<th>Ethnic origin</th>
<th>Anglo-Celtic</th>
<th>Southern European</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>31,389</td>
<td>9,939</td>
</tr>
<tr>
<td>Age (y)*</td>
<td>55.1 (8.9)</td>
<td>55.9 (7.8)</td>
</tr>
<tr>
<td>Waist circumference (cm)*</td>
<td>84 (13)</td>
<td>90 (12)</td>
</tr>
<tr>
<td>Females</td>
<td>18,923 (60)</td>
<td>5,459 (55)</td>
</tr>
<tr>
<td>Smoking status † (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>17,878 (57)</td>
<td>5,855 (59)</td>
</tr>
<tr>
<td>Former</td>
<td>10,198 (32)</td>
<td>2,709 (27)</td>
</tr>
<tr>
<td>Current</td>
<td>3,310 (11)</td>
<td>1,368 (14)</td>
</tr>
<tr>
<td>Alcohol intake †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime abstainer</td>
<td>7,694 (25)</td>
<td>4,138 (42)</td>
</tr>
<tr>
<td>Former drinker</td>
<td>1,280 (4)</td>
<td>369 (4)</td>
</tr>
<tr>
<td>1-19 g/d</td>
<td>15,612 (50)</td>
<td>3,351 (34)</td>
</tr>
<tr>
<td>20-39 g/d</td>
<td>4,326 (14)</td>
<td>1,210 (12)</td>
</tr>
<tr>
<td>40+ g/d †</td>
<td>2,452 (9)</td>
<td>857 (9)</td>
</tr>
<tr>
<td>Education †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary school</td>
<td>1,369 (4)</td>
<td>6,653 (67)</td>
</tr>
<tr>
<td>Some secondary school</td>
<td>13,936 (44)</td>
<td>1,847 (19)</td>
</tr>
<tr>
<td>Completed secondary school</td>
<td>7,437 (24)</td>
<td>1,093 (11)</td>
</tr>
<tr>
<td>Degree/diploma</td>
<td>8,644 (28)</td>
<td>340 (3)</td>
</tr>
<tr>
<td>Recreational physical activity †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>5,638 (18)</td>
<td>3,551 (36)</td>
</tr>
<tr>
<td>Low</td>
<td>6,079 (19)</td>
<td>2,206 (22)</td>
</tr>
<tr>
<td>Medium</td>
<td>11,461 (37)</td>
<td>3,238 (33)</td>
</tr>
<tr>
<td>High</td>
<td>8,211 (26)</td>
<td>940 (9)</td>
</tr>
<tr>
<td>Multivitamin use †</td>
<td>6,052 (19)</td>
<td>652 (7)</td>
</tr>
<tr>
<td>Calcium supplement use †</td>
<td>3,888 (12)</td>
<td>497 (5)</td>
</tr>
<tr>
<td>Hormone replacement therapy use † (women only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>13,353 (71)</td>
<td>4,667 (87)</td>
</tr>
<tr>
<td>Former</td>
<td>1,762 (9)</td>
<td>329 (6)</td>
</tr>
<tr>
<td>Current</td>
<td>5,717 (20)</td>
<td>341 (6)</td>
</tr>
<tr>
<td>Red meat consumption † (times a week)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td>7,642 (24)</td>
<td>2,334 (24)</td>
</tr>
<tr>
<td>5-6</td>
<td>7,363 (24)</td>
<td>2,125 (21)</td>
</tr>
<tr>
<td>7-9</td>
<td>8,679 (28)</td>
<td>2,357 (24)</td>
</tr>
<tr>
<td>10+</td>
<td>7,678 (24)</td>
<td>3,104 (31)</td>
</tr>
<tr>
<td>Energy intake (kJ/d) †</td>
<td>8,899 [7,090-11,101]</td>
<td>8,092 [6,287-10,414]</td>
</tr>
<tr>
<td>Cereal fiber intake (g/d) †</td>
<td>10.5 [7.5-14.5]</td>
<td>8.1 [5.5-11.5]</td>
</tr>
<tr>
<td>Calcium intake (mg/d) †</td>
<td>826 [633-1,064]</td>
<td>680 [509-908]</td>
</tr>
<tr>
<td>Folate intake (mg/d) †</td>
<td>319 [249-405]</td>
<td>253 [187-344]</td>
</tr>
</tbody>
</table>

* Mean (SD).
† Numbers do not always add up to total numbers due to missing data.
‡ Median [interquartile range].

Cancer Epidemiol Biomarkers Prev 2008;17(7). July 2008

Downloaded from cebp.aacrjournals.org on June 21, 2017. © 2008 American Association for Cancer Research.
(95% CI, 19-71; \(P < 0.001 \)). Both features were more common in tumors from females than from males (\(P < 0.005 \)) and in tumors of the right colon (\(P < 0.005 \)), were positively associated with MSI-high tumor status (\(P < 0.001 \) and MLH1 methylation (\(P < 0.001 \)), and were inversely associated with \(KRAS \) mutations (\(P < 0.001; \) Table 2).

Table 3 shows HR by sex and ethnic origin. Overall, women had a slightly lower incidence rate of colorectal cancer than did men (HR, 0.88; 95% CI, 0.74-1.05) and also had slightly lower incidence of tumors that were CIMP negative (HR, 0.84; 95% CI, 0.69-1.02) or that did not have \(BRAF \) mutations (HR, 0.83; 95% CI, 0.68-1.01) but had higher incidence rates for tumors that were CIMP positive or that had \(BRAF \) mutations (CIMP positive: HR, 1.83; 95% CI, 1.11-3.01; \(BRAF \) mutation: HR, 1.67; 95% CI, 1.08-2.58). For both molecular features, the differences between the HR for the two subtypes were significant (Table 3).

The HR for ethnicity in relation to tumors of the right colon were similar to those for all sites, although the 95% CI were wider (data not shown); \(P \) values for the differences between HR for the two subtypes were 0.07 for CIMP status and 0.008 for \(BRAF \) mutation status.

Discussion

Overall, people of southern European origin had ~20% lower incidence rate of colorectal cancer than did people of Anglo-Celtic origin. This was largely due to their much lower incidence rate of tumors with \(BRAF \) mutations or the CIMP, because both ethnic groups had similar incidence rates of other colorectal cancer. Like others, we also found that \(BRAF \) mutation and CIMP were strongly associated with each other and were more common in tumors from females and the proximal colon (10, 21). In addition, also as reported previously, \(BRAF \) mutation was positively associated with MSI-high status and MLH1 methylation and inversely associated with the presence of \(KRAS \) in a tumor (33).

Our study has several strengths and limitations. We had almost complete ascertainment of colorectal cancer and little loss to follow-up but were unable to obtain archival tissue from the primary lesion for 19% of cases. However, this is unlikely to have biased the observed associations because the proportions of cases with no
suitable tissue varied little by ethnicity or sex. Our measurement of CIMP used a panel of recently reported markers with high sensitivity and specificity, and the associations between CIMP and BRAF mutation status, MSI status, MLH1 methylation, KRAS mutations, and subsite are supported by earlier studies, indicating that our measurements of CIMP and BRAF mutation status are in general agreement with those of other investigators (21).

Despite residing in Australia for many years, the migrants maintained substantial differences in dietary patterns from those born in Australia (34) and also differed from the Australian-born participants in their smoking habits, alcohol intake, waist circumference, and education. Nevertheless, control for these risk factors had little effect on the results. It is unlikely that family history, which was not recorded, could account for a strong inverse association between southern European descent and risk of tumors with CIMP or BRAF mutation status but little or no association with risk of tumors not displaying these features. We cannot rule out chance as an explanation for the ethnic differences in risk of BRAF-related colorectal cancer.

The HR for all colorectal cancer for the southern European migrants (0.76) is consistent with descriptive studies of mortality. Compared with Australian-born residents, migrants who had lived in Australia for at least 30 years had mortality rate ratios between 0.7 (25) and 0.8 (95% CI, 0.7-1.0; ref. 26). This suggests that although migrants’ risk for the more common form of colorectal cancer converges to that of the Australian born with increasing duration of residence, the same is not true for tumors with BRAF mutation or the CIMP. Risk factors that act primarily before migration, or genetic factors (35, 36), could explain the lack of convergence for these tumor types.

Evidence for a genetic predisposition for tumors bearing BRAF mutations comes from a case-control study of colorectal cancer, where microsatellite-stable tumors with BRAF mutation were over four times more likely than tumors without BRAF mutation to be associated with a family history of colorectal cancer (37). In addition, familial syndromes associated with BRAF mutation-bearing tumors have been described from Australia and Sweden (29, 38). There is also indirect evidence regarding an association between ethnicity and the risk of colorectal cancer with CIMP and BRAF mutation from a study of hyperplastic polyposis syndrome, which is a rare condition characterized by multiple serrated polyps and tumors with CIMP and BRAF mutation. In a case series from a gastroenterology clinic in New Zealand, all 24 cases were people of European origin, whereas only 46% of patients attending the clinic were of European descent (39). Thus, the possibility exists that a sequence variant in the Anglo-Celtic population may underlie the development of CIMP-related colorectal cancer either directly or through modulation of an environmental influence; however, at present, none has been definitively identified.

Two studies have examined associations between common genetic variants and CIMP status for patients with colorectal cancer, including genes in the folate pathway. van Rijnsoever et al. found that overall there was no association between a variant in the 5,10-methylenetetrahydrofolate reductase gene (C677T; rs1801133) and type of colorectal cancer, but that females had a higher proportion of CIMP-positive tumors (40). CIMP was defined as methylation of two of three genes (CDKN2A, MINT2, and MLH1) present, none has been definitively identified.

<table>
<thead>
<tr>
<th>Type of colorectal cancer</th>
<th>Male</th>
<th>Female</th>
<th>P*</th>
<th>Anglo-Celtic</th>
<th>Southern European</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person-years</td>
<td>187,654</td>
<td>277,942</td>
<td></td>
<td>346,149</td>
<td>119,447</td>
<td></td>
</tr>
<tr>
<td>All colorectal cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>371</td>
<td>347</td>
<td></td>
<td>545</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>Partially adjusted</td>
<td>1</td>
<td>0.65 (0.57-0.80)</td>
<td>1</td>
<td>0.84 (0.70-0.99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully adjusted</td>
<td>1</td>
<td>0.88 (0.74-1.05)</td>
<td></td>
<td>0.78 (0.65-0.93)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIMP status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>24</td>
<td>49</td>
<td></td>
<td>65</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Partially adjusted</td>
<td>1</td>
<td>1.37 (0.84-2.24)</td>
<td>1</td>
<td>0.35 (0.17-0.72)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully adjusted</td>
<td>1</td>
<td>1.83 (1.11-3.01)</td>
<td></td>
<td>0.32 (0.16-0.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>266</td>
<td>240</td>
<td></td>
<td>374</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Partially adjusted</td>
<td>1</td>
<td>0.63 (0.53-0.75)</td>
<td>1</td>
<td>0.92 (0.76-1.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully adjusted</td>
<td>1</td>
<td>0.84 (0.69-1.02)</td>
<td>0.003</td>
<td>0.86 (0.70-1.05)</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>BRAF mutation status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>33</td>
<td>62</td>
<td></td>
<td>85</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Partially adjusted</td>
<td>1</td>
<td>1.26 (0.83-1.93)</td>
<td>1</td>
<td>0.33 (0.17-0.62)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully adjusted</td>
<td>1</td>
<td>1.67 (1.08-2.58)</td>
<td></td>
<td>0.30 (0.16-0.58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>257</td>
<td>230</td>
<td></td>
<td>356</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Partially adjusted</td>
<td>1</td>
<td>0.63 (0.52-0.75)</td>
<td>1</td>
<td>0.96 (0.79-1.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully adjusted</td>
<td>1</td>
<td>0.83 (0.68-1.01)</td>
<td>0.003</td>
<td>0.90 (0.74-1.11)</td>
<td>0.002</td>
<td></td>
</tr>
</tbody>
</table>

* P value for test that fully adjusted HR for two tumor subtypes are equal.
† HR (95% CI) adjusted for both variables in the table and with age as the time scale.
‡ HR (95% CI) adjusted for both variables in the table plus waist circumference and alcohol intake and with age as the time scale.
was higher for colorectal cancer patients with a poly-
morphism in the gene coding 5-methyltetrahydro-
olate-homocysteine methyltransferase, also known as
methionine synthase reductase (41). Other genes in-
volved in the folate pathway, those encoding including
5-methyltetrahydrofolate-homocysteine methyltrans-
ferase and thymidylate synthetase, have been shown to
be associated with colorectal cancer in general (42).

Colorectal cancers with CIMP and BRAF mutation
ascend in a subset of serrated polyps called sessile
serrated adenomas (3). Given our findings, it is likely that sessile
serrated adenomas, lesions with high levels of BRAF
mutation (10), may also be more common in people of
Anglo-Celtic descent than in people of southern
European descent. The prevalence of these lesions in
patients undergoing colonoscopy ranges from 4% to 9%
(43, 44) and is associated with increased polyp burden
(44). CIMP tumors are frequently located in the proximal
colon (40), and the detection of their sessile precursor
lesions may prove difficult (45). CIMP-related colorectal
tumors have been shown to account for almost all
nonfamilial MSI-high colorectal cancers (11) and are
associated with improved survival for this subgroup (46).

In contrast, tumors that show somatic BRAF mutation in
the absence of a MSI-high phenotype may have a
relatively poor outcome (37).

In summary, we have confirmed the findings of
Weisenberger et al. (21) that their five-marker panel
effectively identifies CIMP colorectal cancer and its
association with BRAF mutation, female sex, proximal
location in the colon, MSI-high tumor status, and MLH1
methylation. Further, we report the novel finding that
individuals with Anglo-Celtic ancestry were more likely
to develop CIMP-related colorectal cancer than were
individuals of Italian or Greek origin, and this difference
was unlikely to be due to environmental factors
commonly associated with colorectal cancer.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The costs of publication of this article were defrayed in part
by the payment of page charges. This article must therefore be
hereby marked advertisement in accordance with 18 U.S.C.
Section 1734 solely to indicate this fact.

We thank Peter Laird for extensive advice in the perfor-
manee of MethylLight assays, Veronika Gadvik for laboratory
assistance, Lesley Jaskowski for the preparation of data for this
article, and the pathology laboratories that provided archived
tissue for the project.

This study was made possible by the contribution of many
people, including the original investigators, the Program
Manager, Georgia Marr, and the diligent team who recruited
the participants and who continue working on follow-up.
The authors express their gratitude to the many thousands of
Melbourne residents who continue to participate in the study.

References

1. Biemer-Huttmann AE, Walsh MD, McGuckin MA, et al. Immuno-
histochemical staining patterns of MUC1, MUC2, MUC4, and
MUC5AC mucins in hyperplastic polyps, serrated adenomas, and
traditional adenomas of the colorectum. J Histochem Cytochem 1999;

protein expression in colorectal cancers with high levels of micro-
satellite instability indicates a novel pathway of morphogenesis. Clin

3. Goldstein NS. Clinical significance of (sessile) serrated adenomas:

4. Goldstein NS, Bhanot P, Odish E, Hunter S. Hyperplastic-like colon
polyps that preceded microsatellite-unstable adenocarcinomas. Am J

5. Jass JR. Serrated colorectal cancer: back street or super highway? J
Pathol 2001;193:283–5.

6. Jass JR. Hyperplastic polyps of the colorectum—innocent or guilty?

7. Jass JR. Hyperplastic-like polyps as precursors of microsatellite-

through mutator pathways in hyperplastic polyposis of the color-

9. Jass JR, Young J, Leggett BA. Hyperplastic polyps and DNA
microsatellite unstable cancers of the colorectum. Histopathology

10. Kambara T, Simms LA, Whitehall VL, et al. BRAF mutation is
associated with DNA methylation in serrated polyps and cancers of

11. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Isa JP.
CpG island methylator phenotype in colorectal cancer. Proc Natl

methylated sequences in colorectal cancer by methylated CpG island

13. Beach R, Chan AO, Wu TT, et al. BRAF mutations in aberrant crypt

CpG island hypermethylation in hyperplastic polyposis. Am J Pathol

polyps of the colorectum: relationship of CpG island methylator
phenotype and K-ras mutation to location and histologic subtype.

instability, CpG island methylation phenotype, BRAF and KRAS
status in serrated polyps and traditional adenomas indicates separate
pathways to distinct colorectal carcinoma end points. Am J Surg

Mutations in hyperplastic polyposis and serrated adenomas of the
colorectum: relationship to histology and CpG island methylation

18. Rosenberg DW, Yang S, Pleau DC, et al. Mutations in BRAF and
KRAS differentially distinguish serrated versus non-serrated hyper-

19. Jass JR. Classification of colorectal cancer based on correlation of
clinical, morphological and molecular features. Histopathology

20. Australian Institute of Health and Welfare and Australasian
Association of Cancer Registries. Cancer in Australia: an overview,

methylator phenotype underlies sporadic microsatellite instability
and is tightly associated with BRAF mutation in colorectal cancer.

smoking, CpG island methylator phenotype, and V600E BRAF

associations with CpG island methylator phenotype and BRAF

24. McMichael AJ, McCall MG, Harshbarger JM, Woodings TL. Patterns
of gastro-intestinal cancer in European migrants to Australia: the role

26. McCredie M, Williams S, Coates M. Cancer mortality in migrants
from the British Isles and continental Europe to New South Wales,

FFQ: a food frequency questionnaire for use in an Australian
prospective study involving an ethnically diverse cohort. Asia Pac J

Ethnicity and Risk for Colorectal Cancers Showing Somatic BRAF V600E Mutation or CpG Island Methylator Phenotype

Dallas R. English, Joanne P. Young, Julie A. Simpson, et al.

Cancer Epidemiol Biomarkers Prev 2008;17:1774-1780.

Updated version
Access the most recent version of this article at:
http://cebp.aacrjournals.org/content/17/7/1774

Cited articles
This article cites 44 articles, 18 of which you can access for free at:
http://cebp.aacrjournals.org/content/17/7/1774.full.html#ref-list-1

Citing articles
This article has been cited by 23 HighWire-hosted articles. Access the articles at:
/content/17/7/1774.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.